精英家教网 > 高中数学 > 题目详情
6.已知a>b,c<d,则a-c与b-d的大小关系是a-c>b-d.

分析 若c<d,则-c>-d,进而可得a-c>b-d.

解答 解:∵a>b,c<d,
∴-c>-d,
∴a-c>b-d,
故答案为:>

点评 本题考查的知识点是不等式的基本性质,熟练掌握不等式的基本性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设关于x的方程x2-mx-1=0有两个实根α,β,α<β,函数f(x)=$\frac{2x-m}{{x}^{2}+1}$.若λ,μ均为正实数,则|f($\frac{λα+μβ}{λ+μ}$)-f($\frac{μα+λβ}{λ+μ}$)|(  )|α-β|
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=sin(2x+φ)(其中0<φ<π)满足f(-x)=f(x),则(  )
A.f(x)在$(0,\frac{π}{2})$单调递减B.f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递减
C.f(x)在$(0,\frac{π}{2})$单调递增D.f(x)在$(\frac{π}{4},\frac{3π}{4})$单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+ai,z1z2=-4,则a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆的两个焦点的坐标分别是(0,-3)和(0,3),且椭圆经过点  (0,4),求
(1)该椭圆的标准方程;
(2)求过点(3,0)且斜率为$\frac{4}{5}$的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=sinx+cos2x的值域是[-2,$\frac{9}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C上的动点P到两定点O(0,0),A(3,0)的距离之比为$\frac{1}{2}$.
(1)求曲线C的方程;
(2)若直线l经过点(0,-2),且直线l交曲线C于A,B两点.以AB为直径的圆能否过坐标原点?若能求出直线l的方程,若不能说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在单位圆x2+y2=1中(含边界)任取一点M,则点M落在第一象限的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若二项式($\frac{\sqrt{5}}{5}$x2+$\frac{1}{x}$)6的展开式中的常数项为m,则$\int_1^m$(2x2-4x)dx=$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案