精英家教网 > 高中数学 > 题目详情
16.设关于x的方程x2-mx-1=0有两个实根α,β,α<β,函数f(x)=$\frac{2x-m}{{x}^{2}+1}$.若λ,μ均为正实数,则|f($\frac{λα+μβ}{λ+μ}$)-f($\frac{μα+λβ}{λ+μ}$)|(  )|α-β|
A.B.C.D.

分析 由已知可知,f(α)=$\frac{1}{α}$,f(β)=$\frac{1}{β}$,αβ=-1,f(x)在区间(α,β)单调递增,进而即可得到结论.

解答 解::∵α,β是方程x2-mx-1=0的两个根,
∴α+β=m,αβ=-1,
∴f(α)=$\frac{2α-m}{{α}^{2}+1}$=$\frac{2α-(α+β)}{{α}^{2}+αβ}$=$\frac{1}{α}$,
同理f(β)=$\frac{1}{β}$,
∵f′(x)=-$\frac{2({x}^{2}-mx-1)}{{(x}^{2}+1)^{2}}$=-$\frac{2(x-α)(x-β)}{{{(x}^{2}+1)}^{2}}$,
当x∈(α,β)时,f'(x)>0,
∴f(x)在(α,β)上单调递增;
∵$\frac{λα+μβ}{λ+μ}$-α=$\frac{μ(β-α)}{λ+μ}$>0,
同理可证:α<$\frac{μα+λβ}{λ+μ}$<β
∴f(α)<f($\frac{λα+μβ}{λ+μ}$)<f(β),f(α)<f($\frac{μα+λβ}{λ+μ}$)<f(β),
∴|f($\frac{λα+μβ}{λ+μ}$)-f($\frac{μα+λβ}{λ+μ}$)|<|f(α)-f(β)|=|$\frac{1}{α}$-$\frac{1}{β}$|=|$\frac{β-α}{αβ}$|=|α-β|,
故选:B

点评 本题考查的知识点是二次函数的图象和性质,函数的单调性的判断与证明,一元二次方程根与系数的关系(韦达定理),熟练掌握一元二次方程根与系数的关系(韦达定理)是解答的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.6名志愿者选4人去“”鸟巢”和“水立方”实地培训,每处2人,其中乙不能去“水立方”,则选派方法有(  )
A.60B.70C.80D.90

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,AB=1,AC=3,B=60°,则cosC=(  )
A.-$\frac{5}{6}$B.$\frac{5}{6}$C.-$\frac{\sqrt{33}}{6}$D.$\frac{\sqrt{33}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求直线l:3x-y-6=0被圆C:x2+y2-2x-4y=0截得的弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定义在R上的函数f(x)满足f(x+2)=f(x-2)且f(-2-x)=f(-2+x),当x∈[0,2]时,$f(x)=cos\frac{π}{4}x$.
(1)求当x∈[-4,0]时,f(x)的解析式;
(2)求当$f(x)≥\frac{1}{2}$时,x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设全集U={1,2,3,4,5},若∁UA={1,2,4},则集合A={3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=log2(x2-2x+1),g(x)=$\left\{\begin{array}{l}x+b,x≤0\\{a^x}-4,x>0\end{array}$,(其中a>0)
(1)求函数f(x)的零点;
(2)若函数f(x)与函数g(x)的零点相同,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z满足(z-1)i=1+i,则z的共轭复数为(  )
A.-2-iB.-2+iC.2-iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a>b,c<d,则a-c与b-d的大小关系是a-c>b-d.

查看答案和解析>>

同步练习册答案