精英家教网 > 高中数学 > 题目详情
4.求直线l:3x-y-6=0被圆C:x2+y2-2x-4y=0截得的弦AB的长.

分析 将圆的方程化为标准方程从而确定圆心和半径.根据直线与圆截得的弦长公式求出弦AB的长.

解答 解:将圆的方程x2+y2-2x-4y=0化为标准方程,得:
(x-1)2+(y-2)2=5
∴圆心坐标为(1,2),半径$\sqrt{5}$.
∴圆心到直线的距离d=$\frac{|3-2-6|}{\sqrt{1+9}}$=$\frac{\sqrt{10}}{2}$.
弦AB的长|AB|=2$\sqrt{5-\frac{5}{2}}$=$\sqrt{10}$.

点评 本题考查直线与圆相交的性质,以及弦长公式的应用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-2|•(x+1).
(1)将f(x)写成分段函数,并作出函数f(x)的图象;
(2)根据函数的图象写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=6+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ) 写出直线l普通方程和曲线C的直角坐标方程;
(Ⅱ) 过点M(-1,0)且与直线l平行的直线l1交C于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.y=sin(2x+φ)(0<φ<π)为偶函数,则其单调递减区间为[kπ,kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则它表面积是(  )
A.24+$\sqrt{5}$B.24-πC.24+($\sqrt{5}$-1)πD.20+($\sqrt{5}$-1)π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC内接于以原点O为圆心半径为1的圆,若2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$+$\sqrt{7}\stackrel{?}{OC}$=0,则∠ACB=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设关于x的方程x2-mx-1=0有两个实根α,β,α<β,函数f(x)=$\frac{2x-m}{{x}^{2}+1}$.若λ,μ均为正实数,则|f($\frac{λα+μβ}{λ+μ}$)-f($\frac{μα+λβ}{λ+μ}$)|(  )|α-β|
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,给出下列命题:
①2a-3b+1>0;   ②a≠0时,$\frac{b}{a}$有最小值,无最大值;
③存在正实数m,使得$\sqrt{{a}^{2}+{b}^{2}}$>m恒成立;
④a>0且a≠1,b>0时,则$\frac{b}{a-1}$的取值范围是(-∞,-$\frac{1}{3}$)∪($\frac{2}{3}$,+∞).
其中正确的命题是(  )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+ai,z1z2=-4,则a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案