精英家教网 > 高中数学 > 题目详情
9.已知△ABC内接于以原点O为圆心半径为1的圆,若2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$+$\sqrt{7}\stackrel{?}{OC}$=0,则∠ACB=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$+$\sqrt{7}\stackrel{?}{OC}$=0⇒2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$=-$\sqrt{7}\stackrel{?}{OC}$,两边平方可得$\stackrel{?}{OA}$•$\stackrel{?}{OB}$=cos∠AOB=-$\frac{1}{2}$,从而可得∠AOB=$\frac{2π}{3}$,继而可得答案.

解答 解:∵2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$+$\sqrt{7}\stackrel{?}{OC}$=0,
∴2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$=-$\sqrt{7}\stackrel{?}{OC}$,又|$\stackrel{?}{OA}$|=|$\stackrel{?}{OB}$|=|$\overrightarrow{OC}$|=1,
∴等式两边平方得:4+9+12$\stackrel{?}{OA}$•$\stackrel{?}{OB}$=7,
∴$\stackrel{?}{OA}$•$\stackrel{?}{OB}$=cos∠AOB=-$\frac{1}{2}$,如图:

∴∠AOB=$\frac{2π}{3}$,
∴∠ACB=$\frac{1}{2}$∠AOB=$\frac{π}{3}$.
故选:B.

点评 本题考查平面向量的数量积的应用,考查转化思想与作图及运算能力,求得∠AOB=$\frac{2π}{3}$是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.(1)过原点作直线l的垂线,若垂足为A(-2,3),求直线l的方程;
(2)三角形三个顶点是A(4,0),B(6,7),C(0,3),求AB边上的高所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=sin2[x]十sin2{x}-1(x∈[0,100])的零点个数为32,函数g(x)=[x].{x}-$\frac{1}{3}$x-1(x∈[0,100])的零点个数为97(注:其中[x]和{x}分别表示x的整数部分与小数部分.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρsin(θ-$\frac{π}{6}$)=2.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求直线l:3x-y-6=0被圆C:x2+y2-2x-4y=0截得的弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x<0,则$x+\frac{1}{x}$的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设全集U={1,2,3,4,5},若∁UA={1,2,4},则集合A={3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过直线y=2与抛物线x2=8y的两个交点,并且与抛物线准线相切的圆的方程为x2+(y-2)2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Acos(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=$\frac{2π}{3}$时,函数f(x)取得最大值,则下列结论正确的是(  )
A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(-)<f(-2)<f(2)

查看答案和解析>>

同步练习册答案