精英家教网 > 高中数学 > 题目详情
17.在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρsin(θ-$\frac{π}{6}$)=2.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)求曲线C上的点到直线l的最大距离.

分析 (Ⅰ)利用极坐标与直角坐标的互化方法求出直线l的直角坐标方程;消去参数得到曲线C的普通方程;
(Ⅱ)利用参数法求曲线C上的点到直线l的最大距离.

解答 解:(Ⅰ)由ρsin(θ-$\frac{π}{6}$)=2得ρ($\sqrt{3}$sinθ-cosθ)=4,
∴l:x-$\sqrt{3}y+4=0$…(2分)
由$\left\{\begin{array}{l}{x=cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$得C:${x}^{2}+\frac{{y}^{2}}{3}$=1.…(5分)
(Ⅱ)在C上任取一点P(cosθ,$\sqrt{3}$sinθ),则点P到直线l的距离为d=$\frac{|cosθ-3sinθ+4|}{2}$=$\frac{|\sqrt{10}cos(θ+α)+4|}{2}$.…(7分)
∴当cos(θ+α)=1,dmax=2+$\frac{\sqrt{10}}{2}$.…(10分)

点评 本题考查极坐标与直角坐标、参数方程与普通方程的互化,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.函数f(x)=4x-a•2x+1(-1≤x≤2)的最小值为g(a).
(Ⅰ) 当a=2 时,求g(a);
(Ⅱ) 求f(x)的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(-1,9)时,f(x)=x2-2x,则函数f(x)在[0,2016]上的零点个数是605.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设Sn是等差数列{an}的前n项和,若a1+a3+a5=6,则S5=(  )
A.5B.7C.10D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.y=sin(2x+φ)(0<φ<π)为偶函数,则其单调递减区间为[kπ,kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知y=f(x)+3x2是奇函数,f(2)=3,设g(x)=f(x)-3x,则g(-2)=(  )
A.-27B.27C.-21D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC内接于以原点O为圆心半径为1的圆,若2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$+$\sqrt{7}\stackrel{?}{OC}$=0,则∠ACB=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=e,则f(x2)=(  )
A.e2B.eC.$\sqrt{e}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.以下四个关于圆锥曲线的命题中:
①双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$与椭圆$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦点;
②在平面内,设A,B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k为正实数,则动点P的轨迹为椭圆;
③方程2x2-x+1=0的两根可分别作为椭圆和双曲线的离心率;
④已知P是双曲线$\frac{x^2}{64}-\frac{y^2}{36}=1$上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为33.
其中真命题的序号为①④.

查看答案和解析>>

同步练习册答案