精英家教网 > 高中数学 > 题目详情
7.以下四个关于圆锥曲线的命题中:
①双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$与椭圆$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦点;
②在平面内,设A,B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k为正实数,则动点P的轨迹为椭圆;
③方程2x2-x+1=0的两根可分别作为椭圆和双曲线的离心率;
④已知P是双曲线$\frac{x^2}{64}-\frac{y^2}{36}=1$上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为33.
其中真命题的序号为①④.

分析 利用椭圆、双曲线的定义及标准方程中a、b、c的数量关系即可判定.

解答 解:对于①,双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的焦点为(±5,0),椭圆$\frac{x^2}{49}+\frac{y^2}{24}=1$有相同的焦点为(±5,0),故①正确;
对于②,在平面内,设A,B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k>|AB|时,动点P的轨迹才为椭圆,故②错;
对于③,方程2x2-x+1=0的无实,故③错;
对于④,|PF1-|PF2|=2a=16,若|PF1|=17,则|PF2|的值为33或1,可是|PF2|≥c-a=2,故④正确
故答案:①④.

点评 本题考查了椭圆、双曲线的定义及标准方程中a、b、c的数量关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρsin(θ-$\frac{π}{6}$)=2.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过直线y=2与抛物线x2=8y的两个交点,并且与抛物线准线相切的圆的方程为x2+(y-2)2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=x2+2(a+2)x-3在区间[2,+∞)上单调递增,求a的取值范围a≥-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设p:|4x-3|≤1,q:(x-a)(x-a-1)≤0,若?p是?q的必要不充分条件,则实数a的取值范围是[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.${({{x^2}-\frac{2}{{\sqrt{x}}}})^{10}}$的展开式中x5的系数是13440.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Acos(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=$\frac{2π}{3}$时,函数f(x)取得最大值,则下列结论正确的是(  )
A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(-)<f(-2)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若z=mx+y在平面区域$\left\{\begin{array}{l}2x-y≥0\\ 2y-x≥0\\ x+y-3≤0\end{array}\right.$上取得最小值时的最优解不唯一,则z的最大值是(  )
A.-3B.0C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长是短轴长的2倍,且点P($\sqrt{2}$,$\frac{\sqrt{2}}{2}$)是椭圆M上一点,直线y=$\frac{1}{2}$x+m(m<0)与椭圆M交于A,B两点.
(1)求椭圆M的方程;
(2)求证:△PAB的内心在一条定直线上,并求出此定直线的方程.

查看答案和解析>>

同步练习册答案