精英家教网 > 高中数学 > 题目详情
14.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+ai,z1z2=-4,则a=(  )
A.-1B.0C.1D.2

分析 利用复数的运算法则、复数的几何意义即可得出.

解答 解:由题意得,z2=-2+ai,z1z2=-4=(ai)2-4,
∴-a2=0,解得a=0.
故选:B.

点评 本题考查了复数的运算法则、复数的几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求直线l:3x-y-6=0被圆C:x2+y2-2x-4y=0截得的弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z满足(z-1)i=1+i,则z的共轭复数为(  )
A.-2-iB.-2+iC.2-iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设p:|4x-3|≤1,q:(x-a)(x-a-1)≤0,若?p是?q的必要不充分条件,则实数a的取值范围是[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正项数列{an}的前n项和为Sn,对任意n∈N+,有2Sn=an2+an
(1)求数列{an}的通项公式;
(2)令bn=$\frac{1}{{{a_n}\sqrt{{a_{n+1}}}+{a_{n+1}}\sqrt{a_n}}}$,设{bn}的前n项和为Tn,求证:$\frac{{2-\sqrt{2}}}{2}≤{T_n}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Acos(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=$\frac{2π}{3}$时,函数f(x)取得最大值,则下列结论正确的是(  )
A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(-)<f(-2)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a>b,c<d,则a-c与b-d的大小关系是a-c>b-d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.学校根据某班的期中考试成绩绘制了频率分布直方图(如图所示),根据图中所给的数据可知a+b=(  )
A.0.024B.0.036C.0.06D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=(x4+20x3+3x2+7x+k)(2x3+3x2+kx)(x+k),在0处的导数为27,则k=(  )
A.-27B.27C.-3D.3

查看答案和解析>>

同步练习册答案