精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=(x4+20x3+3x2+7x+k)(2x3+3x2+kx)(x+k),在0处的导数为27,则k=(  )
A.-27B.27C.-3D.3

分析 利用导数的运算法则即可得出.

解答 解:f′(x)=(4x3+60x2+6x+7)(2x3+3x2+kx)(x+k)+(x4+20x3+3x2+7x+k)(6x2+6x+k)(x+k)+(x4+20x3+3x2+7x+k)(2x3+3x2+kx),
∴f′(0)=k3=27,解得k=3.
故选:D.

点评 本题考查了导数的运算法则、方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+ai,z1z2=-4,则a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在单位圆x2+y2=1中(含边界)任取一点M,则点M落在第一象限的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若A(1,0),B(0,-1),则|$\overrightarrow{AB}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$),且离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆E的方程;
(2)设O为坐标原点,若点A是椭圆上运动,且点A不在y轴上,点B在直线y=t上,且OA⊥OB,是否存在有序实数对(t,r)使得直线AB与圆O:x2+y2=r2总相切,若存在,求出所有满足题意的有序实数对(t,r);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四面体ABCD的四个顶点都在球O的球面上,AB=AD=CD=2,BD=2$\sqrt{2}$,BD⊥CD,平面ABD⊥平面BCD,则球O的体积为(  )
A.4$\sqrt{3}$πB.$\frac{\sqrt{3}}{2}$πC.$\frac{8\sqrt{2}}{3}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若二项式($\frac{\sqrt{5}}{5}$x2+$\frac{1}{x}$)6的展开式中的常数项为m,则$\int_1^m$(2x2-4x)dx=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,c=2$\sqrt{2}$,则C=$\frac{π}{4}$,则△ABC的面积为(  )
A.$2\sqrt{3}+2$B.$\sqrt{3}+1$C.$2\sqrt{3}-2$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.倾斜角为60°的直线与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)交于A,B两点,若$\overrightarrow{OA}$+$\overrightarrow{OB}$与$\overrightarrow{a}$=(4,-$\sqrt{3}$)共线,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案