精英家教网 > 高中数学 > 题目详情
18.已知a>1,b>0,且a+2b=2,则$\frac{2}{a-1}+\frac{a}{b}$的最小值为4($\sqrt{2}$+1).

分析 求出a-1=1-2b,设$\frac{2}{1-2b}$+$\frac{2-2b}{b}$=t,得到(4+2t)b2-(4+t)b+2=0,通过讨论①4+2t=0,②4+2t≠0的情况,求出t的最小值即$\frac{2}{a-1}+\frac{a}{b}$的最小值即可.

解答 解:∵a+2b=2,∴a-1=1-2b,
∴$\frac{2}{a-1}$+$\frac{a}{b}$=$\frac{2}{1-2b}$+$\frac{2-2b}{b}$,
设$\frac{2}{1-2b}$+$\frac{2-2b}{b}$=t,
则2b+(2-2b)(1-2b)=tb(1-2b),
故(4+2t)b2-(4+t)b+2=0,
①4+2t=0时,t=-2,
故(4-2)b+2=0,解得:b=1,
a+2b=2,得a+2=2,故a=0,与a=1不符,
故4+2t≠0;
②4+2t≠0时,得t≠-2,
由(4+2t)b2-(4+t)b+2=0,
由△≥0,得(4+t)2-4(4+2t)-2≥0,
故t2-8t-16≥0,解得:t≤4-4$\sqrt{2}$(舍)或t≥4+4$\sqrt{2}$,
故$\frac{2}{a-1}+\frac{a}{b}$的最小值为4(1+$\sqrt{2}$),
故答案为:4(1+$\sqrt{2}$).

点评 本题考查基本不等式求最值,整体凑出可用基本不等式的形式是解决问题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知$\overrightarrow a=(1,1)$,$\overrightarrow b=(1,0)$,则当$|{\overrightarrow a-t\overrightarrow b}|$取最小值时,实数t=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设非零平面向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x,y)=(1+my)x(m>0,y>0).
(1)当m=2时,求f(7,y)的展开式中二项式系数最大的项;
(2)已知f(2n,y)的展开式中各项的二项式系数和比f(n,y)的展开式中各项的二项式系数和大992,若f(n,y)=a0+a1y+…+anyn,且a2=40,求$\sum_{i=1}^n{ai}$;
(3)已知正整数n与正实数t,满足$f({n,1})={m^n}f({n,\frac{1}{t}})$,求证:$f({2017,\frac{1}{{1000\sqrt{t}}}})>6f({-2017,\frac{1}{t}})$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an}满足a1=2,a2=4(a3-a4),数列{bn}满足bn=3-2log2an
(1)求数列{an},{bn}的通项公式;
(2)令cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Sn
(3)若λ>0,求对所有的正整数n都有2λ2-kλ+2>a2nbn成立的k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=4sinxcos(x+$\frac{π}{3}$)+m(x∈R,m为常数),其最大值为2.
(Ⅰ)求实数m的值;
(Ⅱ)若f(α)=-$\frac{4\sqrt{3}}{5}$(-$\frac{π}{4}$<α<0),求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x3-ax在(-1,1)上单调递减,则实数a的取值范围为(  )
A.(1,+∞)B.[3,+∞)C.(-∞,1]D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个袋子里装有编号为1,2,3,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回到袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.${∫}_{-1}^{1}$|x|dx等于(  )
A.${∫}_{-1}^{1}$xdxB.${∫}_{-1}^{1}$dx
C.${∫}_{-1}^{0}$(-x)dx+${∫}_{0}^{1}$xdxD.${∫}_{-1}^{0}$xdx+${∫}_{0}^{1}$(-x)dx

查看答案和解析>>

同步练习册答案