精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=x3-ax在(-1,1)上单调递减,则实数a的取值范围为(  )
A.(1,+∞)B.[3,+∞)C.(-∞,1]D.(-∞,3]

分析 求出导函数,令导函数小于等于0在(-1,1)内恒成立,分离出参数a,求出函数的范围,得到a的范围.

解答 解:∵函数f(x)=x3-ax在(-1,1)内单调递减,
∴f′(x)=3x2-a≤0在(-1,1)内恒成立,
即 a≥3x2在(-1,1)内恒成立,
∵3x2<3,
∴a≥3,
故选:B.

点评 解决函数在区间上的单调性已知求参数的范围的问题,递增时令导函数大于等于0恒成立;递减时,令导数小于等于0恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知x,y满足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-3≤0\\ x≥0\\ y≥0\end{array}\right.$,则y+3x的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列不等式中,与不等式$\frac{x+4}{{{x^2}-2x+2}}>3$的解集相同的是(  )
A.(x+4)(x2-2x+2)>3B.x+4>3(x2-2x+2)C.$\frac{1}{{{x^2}-2x+2}}>\frac{3}{x+4}$D.$\frac{{{x^2}-2x+2}}{x+4}<\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>1,b>0,且a+2b=2,则$\frac{2}{a-1}+\frac{a}{b}$的最小值为4($\sqrt{2}$+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,已知点P在曲线Γ:y=$\sqrt{1-\frac{{x}^{2}}{4}}$(x≥0)上,曲线Γ与x轴相交于点B,与y轴相交于点C,点D(2,1)和点E(1,0)满足$\overrightarrow{OD}$=λ$\overrightarrow{CE}$+μ$\overrightarrow{OP}$(λ,μ∈R),则λ+μ的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}中,已知a1=a(a≠0),an+1=(1+$\frac{1}{n}$)an(n∈N*),求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某公司开发一心产品有甲乙两种型号,现发布对这两种型号的产品进行质量检测,从它们的检测数据中随机抽取8次(数值越大产品质量越好),记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5
(1)先要从甲乙中选一种型号产品投入生产,从统计学的角度,你认为生产哪种型号的产品合适?简单说明理由;
(2)若将频率视为概率,对产品乙今后的三次检测数据进行预测,记这三次数据中不低于8.5分的次数为ξ,求ξ的分布列及数学期望ξ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.复数 $\frac{3i}{1+2i}$的虚部是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若复数$z=\frac{1+i}{{{{({1-i})}^2}}}$,则z的虚部为(  )
A.$\frac{1}{2}$B.$\frac{1}{2}i$C.1D.i

查看答案和解析>>

同步练习册答案