精英家教网 > 高中数学 > 题目详情
5.数列{an}中,已知a1=a(a≠0),an+1=(1+$\frac{1}{n}$)an(n∈N*),求an的通项公式.

分析 化简已知条件,利用累乘法求解即可.

解答 解:数列{an}中,已知a1=a(a≠0),an+1=(1+$\frac{1}{n}$)an(n∈N*),
可得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+1}{n}$,
所以$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}…\frac{{a}_{2}}{{a}_{1}}$=$\frac{n}{n-1}•\frac{n-1}{n-2}•\frac{n-2}{n-3}…\frac{2}{1}$
可得$\frac{{a}_{n}}{{a}_{1}}=n$,
所以an=na.
an的通项公式:an=na.

点评 本题考查数列递推式,考查数列的通项,正确运用叠乘法是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次数第1次第2次第3次第4次≥5次
收费比例10.950.900.850.80
该公司从注册的会员中,随机抽取了100位统计他们的消费次数,得到数据如下:
消费次数1次2次3次4次5次
频数60201055
假设汽车美容一次,公司成本为150元.根据所给数据,解答下列问题:
(Ⅰ)估计该公司一位会员至少消费两次的概率;
(Ⅱ)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(Ⅲ)假设每个会员最多消费5次,以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为X元,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x,y)=(1+my)x(m>0,y>0).
(1)当m=2时,求f(7,y)的展开式中二项式系数最大的项;
(2)已知f(2n,y)的展开式中各项的二项式系数和比f(n,y)的展开式中各项的二项式系数和大992,若f(n,y)=a0+a1y+…+anyn,且a2=40,求$\sum_{i=1}^n{ai}$;
(3)已知正整数n与正实数t,满足$f({n,1})={m^n}f({n,\frac{1}{t}})$,求证:$f({2017,\frac{1}{{1000\sqrt{t}}}})>6f({-2017,\frac{1}{t}})$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=4sinxcos(x+$\frac{π}{3}$)+m(x∈R,m为常数),其最大值为2.
(Ⅰ)求实数m的值;
(Ⅱ)若f(α)=-$\frac{4\sqrt{3}}{5}$(-$\frac{π}{4}$<α<0),求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x3-ax在(-1,1)上单调递减,则实数a的取值范围为(  )
A.(1,+∞)B.[3,+∞)C.(-∞,1]D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),若f(2)=2,则f(2017)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个袋子里装有编号为1,2,3,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回到袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE∥面APD;
(2)证明BE⊥CD;
(3)求三棱锥P-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=x+x3(x∈R),当$0<θ<\frac{π}{2}$时,f(asinθ)+f(1-a)>0恒成立,则实数a的取值范围是{a|a≤1}.

查看答案和解析>>

同步练习册答案