分析 化简已知条件,利用累乘法求解即可.
解答 解:数列{an}中,已知a1=a(a≠0),an+1=(1+$\frac{1}{n}$)an(n∈N*),
可得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+1}{n}$,
所以$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}…\frac{{a}_{2}}{{a}_{1}}$=$\frac{n}{n-1}•\frac{n-1}{n-2}•\frac{n-2}{n-3}…\frac{2}{1}$
可得$\frac{{a}_{n}}{{a}_{1}}=n$,
所以an=na.
an的通项公式:an=na.
点评 本题考查数列递推式,考查数列的通项,正确运用叠乘法是关键.
科目:高中数学 来源: 题型:解答题
| 消费次数 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
| 收费比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
| 消费次数 | 1次 | 2次 | 3次 | 4次 | 5次 |
| 频数 | 60 | 20 | 10 | 5 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [3,+∞) | C. | (-∞,1] | D. | (-∞,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com