精英家教网 > 高中数学 > 题目详情
14.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE∥面APD;
(2)证明BE⊥CD;
(3)求三棱锥P-BDE的体积.

分析 (1)取PD中点F,连接AF,EF,可得四边形ABEF是平行四边形,即可的BE∥AF,BE∥面PAD;
(2)可得PA⊥DC.CD⊥面PAD,即AF⊥DC,且AF∥BE,得BE⊥CD;
(3)点E为棱PC的中点,PA⊥底面ABCD,${V_{P-BDE}}={V_{B-PDE}}=\frac{1}{2}{V_{B-PDC}}=\frac{1}{2}{V_{P-BDC}}=\frac{1}{6}{S_{△BDC}}.PA=\frac{2}{3}$.

解答 证明:(1)取PD中点F,连接AF,EF,
∵E,F分别是PC,PD的中点,
∴$EF∥CD,EF=\frac{1}{2}CD$∵$AB∥CD,AB=\frac{1}{2}CD$,
∴EF∥AB,EF=AB∴四边形ABEF是平行四边形,
∴BE∥AF,又BE?面PAD,AF?面PAD∴BE∥面PAD,
(2  由PA⊥面ABCD,DC?面ABCD,∴PA⊥DC.
$\begin{array}{l}又∵AD⊥DC$,∴$DC⊥面PAD\\∴DC⊥AF$,∴AF⊥DC,且AF∥BE,
∴BE⊥CD;
(3)∵点E为棱PC的中点,PA⊥底面ABCD,
∴${V_{P-BDE}}={V_{B-PDE}}=\frac{1}{2}{V_{B-PDC}}=\frac{1}{2}{V_{P-BDC}}=\frac{1}{6}{S_{△BDC}}.PA=\frac{2}{3}$.

点评 本题考查了空间线面平行、线线垂直的判定,考查了等体积法求体积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数y=x3(x>0)的图象在点$({{a_k},{a_k}^3})$处的切线与x轴的交点的横坐标为ak+1,其中k∈N*,若a1=27,则a2+a4的值为(  )
A.24B.16C.26D.27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}中,已知a1=a(a≠0),an+1=(1+$\frac{1}{n}$)an(n∈N*),求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.  
(1)求证:AB⊥平面ADE;
(2)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.复数 $\frac{3i}{1+2i}$的虚部是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=xlnx,g(x)=ex,其中a为常数,e=2,718…
(1)求函数f(x)的单调区间与极值;
(2)若存在x使不等式$\frac{x-m}{g(x)}>\sqrt{x}$成立,求实数m的取值范围;
(3)若x1,x2∈($\frac{1}{e}$,1),x1+x2<1,求证:x1x2<(x1+x24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.若$\vec a•\vec b=\vec b•\vec c$,则$\vec a=\vec c$B.与向量$\vec a$共线的单位向量为$±\frac{\vec a}{{|{\vec a}|}}$
C.若$\vec a∥\vec b$,$\vec b∥\vec c$,则$\vec a∥\vec c$D.若$\vec a∥\vec b$,则存在唯一实数λ使得$\vec a=λ\vec b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别是a,b,c,且$\sqrt{3}$acosC=(2b-$\sqrt{3}$c)cosA.
(1)求角A的大小;
(2)已知等差数列{an}的公差不为零,若a1sinA=1,且a2,a4,a8成等比数列,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若x,y满足约束条件$\left\{\begin{array}{l}x-1≥0\\ x-2y+2≤0\\ x+y-4≤0\end{array}\right.$,则$z=\frac{y}{x}$的取值范围为[1,3].

查看答案和解析>>

同步练习册答案