精英家教网 > 高中数学 > 题目详情
2.如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.  
(1)求证:AB⊥平面ADE;
(2)求点A到平面BDE的距离.

分析 (1)推导出AE⊥CD,CD⊥AD,从而CD⊥平面ADE,再由AB∥CD,能证明AB⊥平面ADE.
(2)由AB⊥平面ADE,能求出三棱锥B-ADE的体积.再由VA-BDE=VB-ADE,能求出点A到平面BDE的距离.

解答 解:(1)证明:∵AE⊥平面CDE,CD?平面CDE,∴AE⊥CD,
又在正方形ABCD中,CD⊥AD,AE∩AD=A,∴CD⊥平面ADE,
又在正方形ABCD中,AB∥CD,∴AB⊥平面ADE.…(6分)
(2)由于(1)得AB⊥AE,∴BE=$\sqrt{A{B}^{2}+A{E}^{2}}=\sqrt{5}$,BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=2$\sqrt{2}$,$DE=\sqrt{A{B}^{2}-A{E}^{2}}=\sqrt{3}$,
得DE2+BE2=BD2,∴△BDE是直角△.
VB-ADE=VA-BDE 即$\frac{1}{3}×\frac{1}{2}×DE×AE×AB$=$\frac{1}{3}×\frac{1}{2}×DE×BE×d$,得d=$\frac{2\sqrt{5}}{5}$…(12分)

点评 本题考查线面平行的证明,考查线面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=2x3-3x2+a的极小值是5,那么实数a等于(  )
A.6B.0C.5D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=4sinxcos(x+$\frac{π}{3}$)+m(x∈R,m为常数),其最大值为2.
(Ⅰ)求实数m的值;
(Ⅱ)若f(α)=-$\frac{4\sqrt{3}}{5}$(-$\frac{π}{4}$<α<0),求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),若f(2)=2,则f(2017)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个袋子里装有编号为1,2,3,…,12的12个相同大小的小球,其中1到6号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回到袋子里,然后再摸出一个球,记录它的颜色和号码,则两次摸出的球都是红球,且至少有一个球的号码是偶数的概率是$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2x+1,数列{an}满足a1=1,${a_{n+1}}=f({a_n})-1(n∈{N^*})$,数列{bn}为等差数列,首项b1=1,公差为2.
(1)求数列{an}、{bn}的通项公式;
(2)令${c_n}={a_n}+{b_n}(n∈{N^*})$,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE∥面APD;
(2)证明BE⊥CD;
(3)求三棱锥P-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f(x)=x3+ax+$\frac{1}{x}$在($\frac{1}{2}$,+∞)是增函数,求a取值范围(  )
A.(-$\frac{1}{2}$,+∞)B.[-$\frac{1}{2}$,+∞)C.[$\frac{13}{4}$,+∞)D.($\frac{13}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=$\frac{1}{x}$的定义域是(  )
A.RB.{0}C.{x|x∈R,且x≠0}D.{x|x≠1}

查看答案和解析>>

同步练习册答案