精英家教网 > 高中数学 > 题目详情
2.函数y=2x3-3x2+a的极小值是5,那么实数a等于(  )
A.6B.0C.5D.1

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值,得到关于a的方程,解出即可.

解答 解:y′=6x2-6x=6x(x-1),
令y′>0,解得:x>1或x<0,
令y′<0,解得:0<x<1,
故函数在(-∞,0)递增,在(0,1)递减,在(1,+∞)递增,
故x=1时,y取极小值2-3+a=5,解得:a=6,
故选:A.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\frac{2}{x-lnx-1}$,则y=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x是实数,i是虚数单位,且(1+xi)(x-i)=-i,则x=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数z=-i(1+2i)的共轭复数为(  )
A.2+iB.2-iC.-2+iD.-2-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,已知$\overrightarrow{OA}$=(1,0),$\overrightarrow{OB}$=(0,b),b∈R.若$\overrightarrow{OC}$=2$\overrightarrow{OA}$+$\overrightarrow{OB}$,点M满足$\overrightarrow{OM}$=λ$\overrightarrow{OC}$,(λ∈R),且|$\overrightarrow{OC}$|•|$\overrightarrow{OM}$|=36,则$\overrightarrow{OM}$•$\overrightarrow{OA}$的最大值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,其中e是自然常数,a∈R.
(1)当a=1时,求f(x)的极值,并证明f(x)>g(x)+$\frac{1}{2}$,x∈(0,e]恒成立;
(2)是否存在实数a,使f(x)的最小值为3?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=x3(x>0)的图象在点$({{a_k},{a_k}^3})$处的切线与x轴的交点的横坐标为ak+1,其中k∈N*,若a1=27,则a2+a4的值为(  )
A.24B.16C.26D.27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(c+a,b),$\overrightarrow{n}$=(c-a,b-c),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角A的大小;
(2)若a=3,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.  
(1)求证:AB⊥平面ADE;
(2)求点A到平面BDE的距离.

查看答案和解析>>

同步练习册答案