精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)=\frac{2}{x-lnx-1}$,则y=f(x)的图象大致为(  )
A.B.C.D.

分析 利用函数的定义域与函数的值域排除B,D,通过函数的单调性排除C,推出结果即可.

解答 解:令g(x)=x-lnx-1,则g′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,
由g'(x)>0,得x>1,即函数g(x)在(1,+∞)上单调递增,
由g'(x)<0得0<x<1,即函数g(x)在(0,1)上单调递减,
所以当x=1时,函数g(x)有最小值,g(x)min=g(0)=0,
于是对任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,
因函数g(x)在(0,1)上单调递减,则函数f(x)在(0,1)上递增,故排除C,
故选:A.

点评 本题考查函数的单调性与函数的导数的关系,函数的定义域以及函数的图形的判断,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与直线x+2y-2=0交于A、B两点,|AB|=$\sqrt{5}$,且弦AB的中点的坐标为(m,$\frac{1}{2}$),求此椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在区间(0,1)上随机取两个实数m,n,则关于x的一元二次方程${x^2}-2\sqrt{m}x+2n=0$有实数根的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx,函数g(x)=$\frac{1}{x}$.
(Ⅰ)证明:函数F(x)=f(x)-g(x)在(0,+∞)上为增函数.
(Ⅱ)用反证法证明:f(x)=2的解是唯一的.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知A(4,1,3)、B(2,-5,1),C为线段AB上的一点,且满足$\overrightarrow{AB}$=2$\overrightarrow{AC}$,则点C的坐标为(3,-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x|x2-2x-3<0},B={x|x>0},则A∪B=(  )
A.(-1,+∞)B.(-∞,3)C.(0,3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数φ(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,若把函数φ(x)的图象纵坐标不变,横坐标扩大到原来的2倍,得到函数f(x).
(1)求函数f(x)的解析式;
(2)若函数y=f(x+φ′)(0<φ′<$\frac{π}{2}$)是奇函数,求函数g(x)=cos(2x-φ′)在[0,2π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知xy=1,且$0<y<\frac{{\sqrt{2}}}{2}$,则$\frac{{{x^2}+4{y^2}}}{x-2y}$的最小值为(  )
A.4B.$\frac{9}{2}$C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=2x3-3x2+a的极小值是5,那么实数a等于(  )
A.6B.0C.5D.1

查看答案和解析>>

同步练习册答案