精英家教网 > 高中数学 > 题目详情
3.在△ABC中,角A,B,C的对边分别是a,b,c,且$\sqrt{3}$acosC=(2b-$\sqrt{3}$c)cosA.
(1)求角A的大小;
(2)已知等差数列{an}的公差不为零,若a1sinA=1,且a2,a4,a8成等比数列,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

分析 (1)运用正弦定理和两角和的正弦公式及内角和定理,化简整理即可得到所求角;
(2)等差数列{an}的公差d不为零,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1=d=2,即有$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{4}{2n•2(n+1)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,再由裂项相消求和方法,计算即可得到所求和.

解答 解:(1)$\sqrt{3}$acosC=(2b-$\sqrt{3}$c)cosA,
可得2bcosA=$\sqrt{3}$(acosC+ccosA),
由正弦定理可得2sinBcosA=$\sqrt{3}$(sinAcosC+sinCcosA)
=$\sqrt{3}$sin(A+C)=$\sqrt{3}$sinB(sinB>0),
即有cosA=$\frac{\sqrt{3}}{2}$,
0<A<π,可得A=$\frac{π}{6}$;
(2)等差数列{an}的公差d不为零,
若a1sinA=1,可得a1=$\frac{1}{sin\frac{π}{6}}$=2,
a2,a4,a8成等比数列,可得a42=a2a8
即有(a1+3d)2=(a1+d)(a1+7d),
化简可得a1=d=2,
则an=a1+(n-1)d=2n,
$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{4}{2n•2(n+1)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
则前n项和Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

点评 本题考查解三角形的正弦定理和三角函数的和差公式,以及等差数列的通项公式和等比数列的中项的性质,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=4sinxcos(x+$\frac{π}{3}$)+m(x∈R,m为常数),其最大值为2.
(Ⅰ)求实数m的值;
(Ⅱ)若f(α)=-$\frac{4\sqrt{3}}{5}$(-$\frac{π}{4}$<α<0),求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE∥面APD;
(2)证明BE⊥CD;
(3)求三棱锥P-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f(x)=x3+ax+$\frac{1}{x}$在($\frac{1}{2}$,+∞)是增函数,求a取值范围(  )
A.(-$\frac{1}{2}$,+∞)B.[-$\frac{1}{2}$,+∞)C.[$\frac{13}{4}$,+∞)D.($\frac{13}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.${∫}_{-1}^{1}$|x|dx等于(  )
A.${∫}_{-1}^{1}$xdxB.${∫}_{-1}^{1}$dx
C.${∫}_{-1}^{0}$(-x)dx+${∫}_{0}^{1}$xdxD.${∫}_{-1}^{0}$xdx+${∫}_{0}^{1}$(-x)dx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.A,B两个班各选出10名学生进行测验,成绩的茎叶图如图2210,用图估计,B班的平均分较高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=x+x3(x∈R),当$0<θ<\frac{π}{2}$时,f(asinθ)+f(1-a)>0恒成立,则实数a的取值范围是{a|a≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=$\frac{1}{x}$的定义域是(  )
A.RB.{0}C.{x|x∈R,且x≠0}D.{x|x≠1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\sqrt{x-1}+{log_2}$(3-2x)的定义域为[1,$\frac{3}{2}$).

查看答案和解析>>

同步练习册答案