精英家教网 > 高中数学 > 题目详情
13.函数f(x)=$\sqrt{x-1}+{log_2}$(3-2x)的定义域为[1,$\frac{3}{2}$).

分析 根据函数f(x)的解析式,列出不等式组,求出解集即可.

解答 解:函数f(x)=$\sqrt{x-1}+{log_2}$(3-2x),
∴$\left\{\begin{array}{l}{x-1≥0}\\{3-2x>0}\end{array}\right.$,
解得1≤x<$\frac{3}{2}$;
∴f(x)的定义域为[1,$\frac{3}{2}$).
故答案为:[1,$\frac{3}{2}$).

点评 本题考查了根据函数解析式求定义域的问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别是a,b,c,且$\sqrt{3}$acosC=(2b-$\sqrt{3}$c)cosA.
(1)求角A的大小;
(2)已知等差数列{an}的公差不为零,若a1sinA=1,且a2,a4,a8成等比数列,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若x,y满足约束条件$\left\{\begin{array}{l}x-1≥0\\ x-2y+2≤0\\ x+y-4≤0\end{array}\right.$,则$z=\frac{y}{x}$的取值范围为[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.平行四边形ABCD中,AB=AD=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-2,$\overrightarrow{DM}$+$\overrightarrow{CM}$=$\overrightarrow{0}$,则$\overrightarrow{AB}$•$\overrightarrow{BM}$的值为(  )
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=a{log_2}x+b{log_3}x+2且f(\frac{1}{2008})=4,则f(2008)$的值为=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)满足:①对定义域内任意x,都有f(x)+f(-x)=0,②对定义域内任意x1,x2,且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则称函数f(x)为“优美函数”.下列函数中是“优美函数”的是(  )
A.f(x)=$\frac{-{e}^{x}+1}{1+{e}^{x}}$
B.f(x)=ln(1+x)+ln$\frac{1}{-x+1}$
C.f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-1,x>0}\\{0,x=0}\\{-{x}^{2}+2x+1,x<0}\end{array}\right.$
D.f(x)=tan x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\frac{{x}^{2}+2x+1}{{x}^{2}+1}$,若f(x0)=2016,则f(-x0)=(  )
A.-2013B.-2014C.-2015D.-2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象的一个最高点坐标为(1,2),相邻的对称轴与对称中心间的距离为2,则下列结论正确的是(  )
A.f(x)的图象关于(2,0)中心对称B.f(x)的图象关于直线x=3对称
C.f(x)在区间(2,3)上单调递增D.f(2017)=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设抛物线C:y2=4x的焦点为F,过点P(-1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,若$\frac{{|{AF}|}}{{|{BF}|}}=\frac{1}{2}$,则k=(  )
A.$\frac{2}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.1D.2

查看答案和解析>>

同步练习册答案