| A. | -4 | B. | 4 | C. | -2 | D. | 2 |
分析 由题意利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算公式求得$\overrightarrow{AB}$•$\overrightarrow{BM}$的值.
解答
解:如图:平行四边形ABCD中,
∵AB=AD=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-2,$\overrightarrow{DM}$+$\overrightarrow{CM}$=$\overrightarrow{0}$,
∴M为CD的中点,
∴$\overrightarrow{AB}•\overrightarrow{BM}$=$\overrightarrow{AB}$•($\overrightarrow{BC}$+$\overrightarrow{CM}$)=$\overrightarrow{AB}$•($\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$)
=$\overrightarrow{AB}•\overrightarrow{AD}$-$\frac{1}{2}$${\overrightarrow{AB}}^{2}$=-2-$\frac{1}{2}•4$=-4,
故选:A.
点评 本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,+∞) | B. | [-$\frac{1}{2}$,+∞) | C. | [$\frac{13}{4}$,+∞) | D. | ($\frac{13}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{1}{e}})$ | B. | $({2\sqrt{2},+∞})$ | C. | $({e+\frac{2}{e},+∞})$ | D. | $({2e+\frac{1}{e},+∞})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com