精英家教网 > 高中数学 > 题目详情
3.设抛物线C:y2=4x的焦点为F,过点P(-1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,若$\frac{{|{AF}|}}{{|{BF}|}}=\frac{1}{2}$,则k=(  )
A.$\frac{2}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.1D.2

分析 设直线l的方程,代入抛物线方程,利用韦达定理及抛物线的焦点弦公式,联立即可求得x1,x2,由x1•x2=1,即可求得k的值.

解答 解:抛物线y2=4x的焦点F(1,0),
直线AB的方程为y-0=k (x+1),k>0.设A(x1,y1),B(x2,y2
代入抛物线y2=4x化简可得 k2x2+(2k2-4)x+k2=0,
∴x1+x2=$\frac{-(2{k}^{2}-4)}{{k}^{2}}$,①x1•x2=1,②
由抛物线的焦半径公式可知:丨AF丨=x1+$\frac{p}{2}$=x1+1,丨BF丨=x2+$\frac{p}{2}$=x2+1,
由$\frac{{|{AF}|}}{{|{BF}|}}=\frac{1}{2}$,则$\frac{{x}_{1}+1}{{x}_{2}+1}$=$\frac{1}{2}$,则x2-2x1=1,③
由①②解得:x1=$\frac{-3{k}^{2}+4}{3{k}^{2}}$,x2=$\frac{-3{k}^{2}+8}{3{k}^{2}}$,
x1•x2=$\frac{-3{k}^{2}+4}{3{k}^{2}}$×$\frac{-3{k}^{2}+8}{3{k}^{2}}$=1,整理得:k2=$\frac{8}{9}$,解得:k=±$\frac{2\sqrt{2}}{3}$,
由k>0,则k=$\frac{2\sqrt{2}}{3}$,
故选B.

点评 本题考查直线与抛物线的位置关系,考查韦达定理及抛物线的焦半径公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\sqrt{x-1}+{log_2}$(3-2x)的定义域为[1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\left\{\begin{array}{l}{2^{x+1}}+\frac{1}{2},x≤2\\ \frac{2}{x-2}-{a^{x-3}},x>2({a∈R,a≠0})\end{array}\right.$若$f({f({f(3)})})=-\frac{6}{5}$,则a为(  )
A.1B.$\root{3}{{\frac{4}{25}}}$C.$2\sqrt{2}$D.$\root{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=|x|•ex(x≠0),其中e为自然对数的底数,关于x的方程$f(x)+\frac{2}{f(x)}-λ=0$有四个相异实根,则实数λ的取值范围是(  )
A.$({0,\frac{1}{e}})$B.$({2\sqrt{2},+∞})$C.$({e+\frac{2}{e},+∞})$D.$({2e+\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足:对于任意n∈N*且n≥2时,an+λan-1=2n+1,a1=4.
(1)若$λ=-\frac{1}{3}$,求证:{an-3n}为等比数列;
(2)若λ=-1.①求数列{an}的通项公式;
②是否存在k∈N*,使得$\sqrt{{a}_{2k}{a}_{2k+1}}$+25为数列{an}中的项?若存在,求出所有满足条件的k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}是首项为2018,公比为2018的等比数列,设数列{$\frac{1}{lo{g}_{2018}{a}_{n}•lo{g}_{2018}{a}_{n+1}}$}的前n项和为Sn,则S1•S2•S3•…S519=$\frac{1}{520}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=aln(x+1)-x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式$\frac{{f({p+1})-f({q+1})}}{p-q}>1$恒成立,则实数a的取值范围为(  )
A.[15,+∞)B.$[{-\frac{1}{8},+∞})$C.[1,+∞)D.[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,A,B,C是△ABC的三个内角,若sin(A+B-C)=sin(A-B+C),则△ABC的形状为等腰三角形或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:x2=2py(p>0)在点P(4,4)处的切线经过椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点E,椭圆C1的短轴长与抛物线C的焦距相等.
(1)求抛物线C和椭圆C1的方程;
(2)经过椭圆C1左焦点F的直线l与椭圆C1交于A,B两点,是否存在定点D,使得无论AB怎样运动,都有∠ADF=∠BDE?若存在,求出D的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案