| A. | $\frac{2}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | 1 | D. | 2 |
分析 设直线l的方程,代入抛物线方程,利用韦达定理及抛物线的焦点弦公式,联立即可求得x1,x2,由x1•x2=1,即可求得k的值.
解答 解:抛物线y2=4x的焦点F(1,0),
直线AB的方程为y-0=k (x+1),k>0.设A(x1,y1),B(x2,y2)
代入抛物线y2=4x化简可得 k2x2+(2k2-4)x+k2=0,
∴x1+x2=$\frac{-(2{k}^{2}-4)}{{k}^{2}}$,①x1•x2=1,②
由抛物线的焦半径公式可知:丨AF丨=x1+$\frac{p}{2}$=x1+1,丨BF丨=x2+$\frac{p}{2}$=x2+1,
由$\frac{{|{AF}|}}{{|{BF}|}}=\frac{1}{2}$,则$\frac{{x}_{1}+1}{{x}_{2}+1}$=$\frac{1}{2}$,则x2-2x1=1,③
由①②解得:x1=$\frac{-3{k}^{2}+4}{3{k}^{2}}$,x2=$\frac{-3{k}^{2}+8}{3{k}^{2}}$,
x1•x2=$\frac{-3{k}^{2}+4}{3{k}^{2}}$×$\frac{-3{k}^{2}+8}{3{k}^{2}}$=1,整理得:k2=$\frac{8}{9}$,解得:k=±$\frac{2\sqrt{2}}{3}$,
由k>0,则k=$\frac{2\sqrt{2}}{3}$,
故选B.![]()
点评 本题考查直线与抛物线的位置关系,考查韦达定理及抛物线的焦半径公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\root{3}{{\frac{4}{25}}}$ | C. | $2\sqrt{2}$ | D. | $\root{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{1}{e}})$ | B. | $({2\sqrt{2},+∞})$ | C. | $({e+\frac{2}{e},+∞})$ | D. | $({2e+\frac{1}{e},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [15,+∞) | B. | $[{-\frac{1}{8},+∞})$ | C. | [1,+∞) | D. | [6,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com