精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=aln(x+1)-x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式$\frac{{f({p+1})-f({q+1})}}{p-q}>1$恒成立,则实数a的取值范围为(  )
A.[15,+∞)B.$[{-\frac{1}{8},+∞})$C.[1,+∞)D.[6,+∞)

分析 依题意可得,f′(x+1)=$\frac{a}{x+2}$-2(x+1)>1恒成立,其中x∈(0,1).分离参数a得:a>[1+2(x+1)](x+2)恒成立,x∈(0,1).构造函数h(x)=[1+2(x+1)](x+2),则a>[h(x)]max,x∈(0,1),利用二次函数的单调性质可求得[h(x)]max=15,从而可得实数a的取值范围.

解答 解:∵f(x)=aln(x+1)-x2
∴f(x+1)=aln(x+2)-(x+1)2
又?p,q∈(0,1),且p≠q,不等式$\frac{{f({p+1})-f({q+1})}}{p-q}>1$恒成立?$\frac{f(p+1)-f(q+1)}{(p+1)-(q+1)}>1$恒成立,
即f′(x+1)=$\frac{a}{x+2}$-2(x+1)>1恒成立,其中x∈(0,1).
整理得:a>[1+2(x+1)](x+2)恒成立,x∈(0,1).
令h(x)=[1+2(x+1)](x+2),
则a>[h(x)]max,x∈(0,1).
∵h(x)=2x2+7x+6,其对称轴方程为x=-$\frac{7}{4}$,h(x)在区间(0,1)上单调递增,
∴当x→1时,h(x)→15,
∴a≥15,即实数a的取值范围为[15,+∞),
故选:A.

点评 本题考查函数恒成立问题,分析得到f′(x+1)=$\frac{a}{x+2}$-2(x+1)>1(0<x<1)恒成立是关键,考查等价转化思想、函数与方程思想的综合运用,考查二次函数的单调性质,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\frac{{x}^{2}+2x+1}{{x}^{2}+1}$,若f(x0)=2016,则f(-x0)=(  )
A.-2013B.-2014C.-2015D.-2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.复数z满足z$•\overline{z}$+(1-2i)z+(1+2i)$\overline{z}$=3,求|z|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设抛物线C:y2=4x的焦点为F,过点P(-1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,若$\frac{{|{AF}|}}{{|{BF}|}}=\frac{1}{2}$,则k=(  )
A.$\frac{2}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3-3x2-9x+2.
(1)求函数f(x)的单调区间;
(2)求函数f(x)在区间[-1,m](m>-1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在(1+3x)n(n∈N*,n≥6)的展开式中,若x5与x6的系数相等,则n的值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆锥的母线长为5,侧面积为20π,则此圆锥的体积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆x2+4y2=16的离心率等于(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{x}{(x+2)ln(1+x)}$
(Ⅰ)当x>0时,证明:f(x)<$\frac{1}{2}$;
(Ⅱ)当x>-1,且x≠0时,不等式(1+kx)(x+2)f(x)>1+x成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案