精英家教网 > 高中数学 > 题目详情
14.已知函数$f(x)=\left\{\begin{array}{l}{2^{x+1}}+\frac{1}{2},x≤2\\ \frac{2}{x-2}-{a^{x-3}},x>2({a∈R,a≠0})\end{array}\right.$若$f({f({f(3)})})=-\frac{6}{5}$,则a为(  )
A.1B.$\root{3}{{\frac{4}{25}}}$C.$2\sqrt{2}$D.$\root{3}{4}$

分析 推导出f(3)=$\frac{2}{3-2}-{a}^{3-3}$=1,从而f(f(3))=f(1)=${2}^{1+1}+\frac{1}{2}$=$\frac{9}{2}$,进而f(f(f(3)))=f($\frac{9}{2}$)=$\frac{2}{\frac{9}{2}-2}-{a}^{\frac{9}{2}-3}$=-$\frac{6}{5}$,由此能求出a的值.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{2^{x+1}}+\frac{1}{2},x≤2\\ \frac{2}{x-2}-{a^{x-3}},x>2({a∈R,a≠0})\end{array}\right.$
∴f(3)=$\frac{2}{3-2}-{a}^{3-3}$=1,
f(f(3))=f(1)=${2}^{1+1}+\frac{1}{2}$=$\frac{9}{2}$,
∵$f({f({f(3)})})=-\frac{6}{5}$,
∴f(f(f(3)))=f($\frac{9}{2}$)=$\frac{2}{\frac{9}{2}-2}-{a}^{\frac{9}{2}-3}$=-$\frac{6}{5}$,
解得a=$\root{3}{4}$.
故选:D.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若x,y满足约束条件$\left\{\begin{array}{l}x-1≥0\\ x-2y+2≤0\\ x+y-4≤0\end{array}\right.$,则$z=\frac{y}{x}$的取值范围为[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\frac{{x}^{2}+2x+1}{{x}^{2}+1}$,若f(x0)=2016,则f(-x0)=(  )
A.-2013B.-2014C.-2015D.-2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象的一个最高点坐标为(1,2),相邻的对称轴与对称中心间的距离为2,则下列结论正确的是(  )
A.f(x)的图象关于(2,0)中心对称B.f(x)的图象关于直线x=3对称
C.f(x)在区间(2,3)上单调递增D.f(2017)=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知tana=3,求下列各式的值:
(1)$\frac{4sina-2cosa}{5cosa+3sina}$
(2)(sina+2cosa)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知z=a+bi(a,b∈R),其中i是虚数单位,z1,z2∈C,定义:D(z)=||z||=|a|+|b|,D(z1,z2)=||z1-z2||给出下列命题:
(1)对任意z∈C,都有D(z)>0
(2)若$\overline z$是复数z的共轭复数,则$D(\overline z)=D(z)$恒成立;
(3)若D(z1)=D(z2),则z1=z2
(4)对任意z1,z2,z3∈C,结论D(z1,z3)≤D(z1,z2)+D(z2,z3)恒成立
则其中真命题是(  )
A.(1)(3)(4)B.(2)(3)(4)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.复数z满足z$•\overline{z}$+(1-2i)z+(1+2i)$\overline{z}$=3,求|z|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设抛物线C:y2=4x的焦点为F,过点P(-1,0)作斜率为k(k>0)的直线l与抛物线C交于A,B两点,若$\frac{{|{AF}|}}{{|{BF}|}}=\frac{1}{2}$,则k=(  )
A.$\frac{2}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知椭圆x2+4y2=16的离心率等于(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案