精英家教网 > 高中数学 > 题目详情
18.若函数f(x)满足:①对定义域内任意x,都有f(x)+f(-x)=0,②对定义域内任意x1,x2,且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则称函数f(x)为“优美函数”.下列函数中是“优美函数”的是(  )
A.f(x)=$\frac{-{e}^{x}+1}{1+{e}^{x}}$
B.f(x)=ln(1+x)+ln$\frac{1}{-x+1}$
C.f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-1,x>0}\\{0,x=0}\\{-{x}^{2}+2x+1,x<0}\end{array}\right.$
D.f(x)=tan x

分析 由条件知具备函数是奇函数,且在定义域上是增函数的函数是“优美函数”.结合函数奇偶性和单调性的定义分别进行判断即可.

解答 解:由:①对定义域内任意x,都有f(x)+f(-x)=0得f(-x)=-f(x),即函数f(x)是奇函数,
由,②对定义域内任意x1,x2,且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,得函数在定义域上为增函数,
A.f(x)=$\frac{-{e}^{x}+1}{1+{e}^{x}}$=$\frac{2-(1+{e}^{x})}{1+{e}^{x}}$=$\frac{2}{1+{e}^{x}}$-1为减函数,不满足条件.
B.由$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$得$\left\{\begin{array}{l}{x>-1}\\{x<1}\end{array}\right.$,得-1<x<1,即函数的定义域为(-1,1),
函数y=ln(1+x)在定义域上是增函数,y=1-x是减函数,y=$\frac{1}{-x+1}$是增函数,则y=ln$\frac{1}{-x+1}$是增函数,即f(x)=ln(1+x)+ln$\frac{1}{-x+1}$是增函数,满足条件.
C.当x>0,则-x<0,则f(-x)=-x2-2x+1=-(x2+2x-1)=-f(x),则函数f(x)是奇函数,作出函数f(x)的图象如图,则由图象知函数在定义域上不单调,不满足条件.
D.函数f(x)是奇函数,在定义域上不单调,不满足条件.
故选:B.

点评 本题主要考查新定义的应用,根据条件判断函数的奇偶性以及函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.A,B两个班各选出10名学生进行测验,成绩的茎叶图如图2210,用图估计,B班的平均分较高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.自由落体的运动速度v=gt(g为常数),则当t∈[1,2]时,物体下落的距离为$\frac{3}{2}$g.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-a|-|x+3|(a∈R).
(1)当a=-1时,解不等式f(x)≤1;
(2)若x∈[0,3]时,不等式f(x)≤4恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\sqrt{x-1}+{log_2}$(3-2x)的定义域为[1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,满足“对任意x1,x2∈(0,+∞),x1≠x2,均有$\frac{f{(x}_{1})-f{(x}_{2})}{{x}_{1}{-x}_{2}}$>0”的是(  )
A.f(x)=2lg(x-1)B.f(x)=(x+1)2C.f(x)=e-xD.f(x)=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在复平面内,复数z=$\frac{i}{1+2i}$的共轭复数对应的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列对于函数f(x)=3+cos2x,x∈(0,3π)的判断正确的是(  )
A.函数f(x)的周期为π
B.对于?a∈R,函数f(x+a)都不可能为偶函数
C.?x0∈(0,3π),使f(x0)>4
D.函数f(x)在区间$[\frac{π}{2},\frac{5π}{4}]$内单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}是首项为2018,公比为2018的等比数列,设数列{$\frac{1}{lo{g}_{2018}{a}_{n}•lo{g}_{2018}{a}_{n+1}}$}的前n项和为Sn,则S1•S2•S3•…S519=$\frac{1}{520}$.

查看答案和解析>>

同步练习册答案