精英家教网 > 高中数学 > 题目详情
1.下列不等式中,与不等式$\frac{x+4}{{{x^2}-2x+2}}>3$的解集相同的是(  )
A.(x+4)(x2-2x+2)>3B.x+4>3(x2-2x+2)C.$\frac{1}{{{x^2}-2x+2}}>\frac{3}{x+4}$D.$\frac{{{x^2}-2x+2}}{x+4}<\frac{1}{3}$

分析 判断出分母大于0,根据不等式的性质求出结论即可.

解答 解:∵x2-2x+2>0,
∴由不等式$\frac{x+4}{{{x^2}-2x+2}}>3$,
得:x+4>3(x2-2x+2),
故选:B.

点评 本题考查了不等式的性质,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查的数据,回答下列问题:
(1)试估算该校高三年级学生获得成绩为B的人数;
(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?
(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为E的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在区间[-4,1]上随机地取一个实数x,若x满足|x|<a的概率为$\frac{4}{5}$,则实数a的值为(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设非零平面向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=8,AD=4,AB=2DC=4$\sqrt{5}$.
(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x,y)=(1+my)x(m>0,y>0).
(1)当m=2时,求f(7,y)的展开式中二项式系数最大的项;
(2)已知f(2n,y)的展开式中各项的二项式系数和比f(n,y)的展开式中各项的二项式系数和大992,若f(n,y)=a0+a1y+…+anyn,且a2=40,求$\sum_{i=1}^n{ai}$;
(3)已知正整数n与正实数t,满足$f({n,1})={m^n}f({n,\frac{1}{t}})$,求证:$f({2017,\frac{1}{{1000\sqrt{t}}}})>6f({-2017,\frac{1}{t}})$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an}满足a1=2,a2=4(a3-a4),数列{bn}满足bn=3-2log2an
(1)求数列{an},{bn}的通项公式;
(2)令cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Sn
(3)若λ>0,求对所有的正整数n都有2λ2-kλ+2>a2nbn成立的k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x3-ax在(-1,1)上单调递减,则实数a的取值范围为(  )
A.(1,+∞)B.[3,+∞)C.(-∞,1]D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设等差数列{an}的前n项和为Sn,已知a1=-10,a3+a5=-8,则当Sn取最小值时,n等于(  )
A.5B.6C.5或6D.11

查看答案和解析>>

同步练习册答案