精英家教网 > 高中数学 > 题目详情
已知平面α的一个法向量
n
=(-2,-2,1),点A(-1,3,0)在α内,则P(-2,1,4)到α的距离为(  )
A.10B.3C.
8
3
D.
10
3
根据题意,可得
∵A(-1,3,0),P(-2,1,4),∴
PA
=(-1,-2,4),
又∵平面α的一个法向量
n
=(-2,-2,1),点A在α内,
∴P(-2,1,4)到α的距离等于向量
PA
n
上的投影的绝对值,
即d=
|
PA
n
|
|n|
=
|-1×(-2)+(-2)×(-2)+4×1|
4+4+1
=
10
3

故选:D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在正方体ABCDA1B1C1D1中,直线A1B与平面BC1D1

成角的正切值为                                           (  )
A.B.
C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平行六面体ANCD-EFGH中,棱AB,AD,AE的长分别为3,4,5,∠EAD=∠EAB=∠DAB=120°,则AG的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD-A1B1C1D1,AB=2,AD=2,AA1=
6
,则点D到平面ACD1的距离是(  )
A.
1
2
B.
3
2
C.
6
2
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD,PA⊥平面ABCD,且PA=4,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AB=2,CD=1,AD=
2
,M,N分别为PD,PB的中点,平面MCN与PA交点为Q.
(Ⅰ)求PQ的长度;
(Ⅱ)求截面MCN与底面ABCD所成二面角的正弦值;
(Ⅲ)求点A到平面MCN的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为a的正方体A1B1C1D1-ABCD中,
(1)作出面A1BC1与面ABCD的交线l,判断l与直线A1C1位置关系,并给出证明;
(2)证明B1D⊥面A1BC1
(3)求直线AC到面A1BC1的距离;
(4)若以A为坐标原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴,建立空间直角坐标系,试写出C,C1两点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面ACD⊥平面α,B为AC的中点,AC=2,∠CBD=60°,P是α内的动点,且P到直线BD的距离为
3
,则△APC面积的最大值为(  )
A.2
3
B.
3
+
2
C.2D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,是一个由三根细铁杆PA,PB,PC组成的支架,三根铁杆的两两夹角都是60°,一个半径为1的球放在支架上,则球心到P的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知E、F分别是三棱锥A-BCD的侧棱AB、AD的中点,
求证:EF平面BCD.

查看答案和解析>>

同步练习册答案