精英家教网 > 高中数学 > 题目详情
若函数f(x)=x2+ax+b与x轴的两个交点分别是(2,0),(3,0),那么函数g(x)=bx2-ax+1的零点是
 
分析:函数f(x)=x2+ax+b的两个零点是2和3,即f(2)=0,f(3)=0,得到关于a和b的两个方程,解方程组即可求出a和b,代入函数g(x)=bx2-ax+1中,解方程g(x)=0即可.
解答:解:由题意:
4+2a+b=0
9+3a+b=0
,解得
a=-5
b=6

∴g(x)=6x2+5x+1的零点为-
1
2
,-
1
3

故答案为:-
1
2
,-
1
3
点评:本题考查函数零点的概念和求解,属基本运算的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x2+ax-1在x∈[1,3]是单调递减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|x2-4x|-a的零点个数为3,则a=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
-x2+2x+3
,则f(x)的单调递增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2•lga-6x+2与X轴有且只有一个公共点,那么实数a的取值范围是
a=1或a=10
9
2
a=1或a=10
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)下列命题:
①若函数f(x)=x2-2x+3,x∈[-2,0]的最小值为2;
②线性回归方程对应的直线
?
y
=
?
b
x+
?
a
至少经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个点;
③命题p:?x∈R,使得x2+x+1<0则¬p:?x∈R,均有x2+x+1≥0;
④若x1,x2,…,x10的平均数为a,方差为b,则x1+5,x2+5,…,x10+5的平均数为a+5,方差为b+25.
其中,错误命题的个数为(  )

查看答案和解析>>

同步练习册答案