精英家教网 > 高中数学 > 题目详情

设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0.
(1)求数列{an}的通项公式;
(2)若bn=2(an+),求数列{bn}的前n项和Sn.

(1) an=n+1    (2) Sn=n2+3n+1-

解析解:(1)由题设可得,
f′(x)=an-an+1+an+2-an+1sin x-an+2cos x.
对任意n∈N*,f′=an-an+1+an+2-an+1=0,
即an+1-an=an+2-an+1,故{an}为等差数列.
由a1=2,a2+a4=8,
解得数列{an}的公差d=1,
所以an=2+1×(n-1)=n+1.
(2)由bn=2(an+)=2(n+1+)=2n++2知,
Sn=b1+b2+…+bn
=2n+2·+
=n2+3n+1-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,其前项和为,满足.
(1)求数列的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2),a1.
(1)求证:是等差数列;
(2)求an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若=,设cn=,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项为,公差为,数列满足.
(1)求数列的通项公式;
(2)记,求数列的前项和.
(注:表示的最大值.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设{an}是公比为正数的等比数列,a1=2,a3=a2+4,
(1)求{an}的通项公式;
(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围.
(2)求{an}前n项和Sn最大时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若正数项数列的前项和为,首项,点在曲线上.
(1)求
(2)求数列的通项公式
(3)设,表示数列的前项和,若恒成立,求及实数的取值范围.

查看答案和解析>>

同步练习册答案