精英家教网 > 高中数学 > 题目详情
设函数f(x)=
a
b
,其中向量
a
=(2cosx,1)
b
=(cosx,
3
sin2x),x∈R

(1)若函数f(x)=1-
3
,且x∈[-
π
3
π
3
]
,求x;
(2)求函数y=f(x)的单调增区间.
分析:(1)把f(x)表示出来并化简,由f(x)=1-
3
及x的范围可求x值;
(2)由正弦函数的单调性及复合函数单调性的判断方法可求其单调增区间.
解答:解:(1)依题设得f(x)=2cos2x+
3
sin2x

=1+cos2x+
3
sin2x
=2sin(2x+
π
6
)+1.
由2sin(2x+
π
6
)+1=1-
3
,得sin(2x+
π
6
)=-
3
2

-
π
3
≤x≤
π
3
,∴-
π
2
≤2x+
π
6
6

∴2x+
π
6
=-
π
3
,即x=-
π
4

(2)由(1)知,f(x)=2sin(2x+
π
6
)+1.
-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ(k∈Z)

解得-
π
3
+kπ≤x≤
π
6
+kπ(k∈Z).
得函数单调区间为:[-
π
3
+kπ
π
6
+kπ
](k∈Z).
点评:本题考查平面向量的数量积运算及正弦函数的单调性问题,属基础题,要重视相关的基础知识基本方法的掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a?b,其中向量
a
=(m,cos2x),
b
=(1+sin2x,1),x∈R,且y=f(x)的图象经过点(
π
4
,2)

(1)求实数m的值;
(2)求f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a-
22x+1

(1)求证:不论a为何实数f(x)总为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)若不等式f(x)+a>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(a-2)x,(x≥2)
(
1
2
)
x
 
-1,(x<2)
an=f(n)
,若数列{an}是单调递减数列,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
2
,-2)
b
=(sin(
π
4
+2x),cos2x)
(x∈R).设函数f(x)=
a
b

(1)求f(-
π
4
)
的值;     
(2)求函数f(x)在区间[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(5
3
cosx,cosx)
b
=(sinx,2cosx)
,其中x∈[
π
6
π
2
]
,设函数f(x)=
a
b
+|
b
|2+
3
2

(1)求函数f(x)的值域;        
(2)若f(x)=5,求x的值.

查看答案和解析>>

同步练习册答案