精英家教网 > 高中数学 > 题目详情
4.求符合下列条件的双曲线的标准方程:
(1)顶点在x轴上,两顶点间的距离是8,e=$\frac{5}{4}$;
(2)焦点在y轴上,焦距是16,e=$\frac{4}{3}$.

分析 利用双曲线的性质,求出几何量,即可求出双曲线的标准方程.

解答 解:(1)顶点在x轴上,两顶点间的距离是8,e=$\frac{5}{4}$,则a=4,c=5,b=3,
∴双曲线的标准方程为$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{9}=1$;
(2)焦点在y轴上,焦距是16,e=$\frac{4}{3}$,则c=8,a=6,b=$\sqrt{28}$=2$\sqrt{7}$,
∴双曲线的标准方程为$\frac{{y}^{2}}{36}-\frac{{x}^{2}}{28}$=1.

点评 本题考查求双曲线的标准方程,考查双曲线的几何性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知圆C的方程为:x2+y2-2x-4y+m=0.
(1)求m的取值范围;
(2)若圆C与直线3x+4y-6=0交于M、N两点,且|MN|=2$\sqrt{3}$,求m的值;
(3)设直线x-y-1=0与圆C交于A、B两点,是否存在实数m,使得以AB为直径的圆过原点,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,点E,F分别是四边形ABCD的边AD,BC的中点,AB=4,DC=6,$\overrightarrow{AB}$与$\overrightarrow{DC}$所成角是60°.
(1)若$\overrightarrow{EF}$=x$\overrightarrow{AB}$+y$\overrightarrow{DC}$,求实数x,y的值;
(2)求线段EF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列双曲线的实轴、虚轴的长,顶点、焦点的坐标和离心率:
(1)x2-8y2=32;
(2)9x2-y2=81;
(3)x2-y2=-4;
(4)$\frac{{x}^{2}}{49}$-$\frac{{y}^{2}}{25}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面积ABCD为矩形,PA⊥平向ABCD,E为PD的中点,AB=AP=1,AD=$\sqrt{3}$,试建立恰当的空间直角坐标系,试求直线PC的一个法向量和平面PCD的一个法向量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)在它的定义域(-∞,+∞)内具有单调性,且对任意实数x,都有f(f(x)+ex)=1-e,e是自然对数的底数,则f(ln2)的值等于(  )
A.-2B.-1C.1D.1-e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从5名同学中任选3名,分别担任班长、团支部书记和学习委员,求:
(1)甲恰好被选上,并且担任班长的概率?
(2)甲、乙两人均被选上,并且甲任班长,乙任团支部书记的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.幂函数f(x)=(t3-t+1)x${\;}^{\frac{7+3t-2{t}^{2}}{5}}$是偶函数,且在(0,+∞)上为增函数,求函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2asinωxcosωx+2$\sqrt{3}$cos2ωx-$\sqrt{3}$(a>0,ω>0)的最大值为2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1-x2|的最小值为$\frac{π}{2}$.
(1)求函数f(x)的解析式及其对称轴;   
(2)求f(x)在区间(0,$\frac{π}{8}$]的取值范围.

查看答案和解析>>

同步练习册答案