精英家教网 > 高中数学 > 题目详情
已知函数f(x)=[x[x]],其中[x]表示不超过实数x的最大整数,如[-2.01]=-3,[1.999]=1.若-
3
2
≤x
3
2
,则f(x)的值域为
 
考点:函数的最值及其几何意义
专题:新定义
分析:先对x的取值进行分类讨论:当-
3
2
≤x<-1时时;当-1≤x<0时;当0≤x<1时;当1≤x≤
3
2
时;故所求f(x)的值域为{0,1,2,3}.
解答: 解:当-
3
2
≤x<-1时,[x]=-2,则2<x[x]≤3,∴f(x)可取2,3;
当-1≤x<0时,[x]=-1,则0<x[x]≤1,∴f(x)可取0,1;
当0≤x<1时,[x]=0,则x[x]=0,∴f(x)=0;
当1≤x≤
3
2
时,[x]=1,则1≤x[x]
3
2
,∴f(x)=1;
故所求f(x)的值域为{0,1,2,3}.
故答案为:{0,1,2,3}.
点评:本题主要考查函数的求值,根据所给定义,将区间进行分类讨论即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示(单位:cm),则该几何体的体积为(  )
A、(32+
π
4
)cm3
B、(32+
π
2
)cm3
C、(41+
π
4
)cm3
D、(41+
π
2
)cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
9
4(1+4x2)
+x2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≥3}∪{x|x<-1},则∁RA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若球O的体积为36πcm3,则它的半径等于
 
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的连续函数y=f(x),对任意x满足f(4-x)=f(x),(x-2)f′(x)<0.则下列结论正确的有
 

①函数y=f(x+2)为偶函数;
②f(
2
)>f(sin18°+cos18°);
③若f(2)=2014,f(2014)=-2,则y=f(x)有两个零点;
④若x1<x2且x1+x2>4则f(x1)<f(x2);
⑤在△ABC中,若三个内角A、B、C成等差数列,且f(
3
sinA)<f(sin(C-
π
6
)),则△ABC为钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,则
sinα-cosα
sina+cosα
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的偶函数,对任意x∈R都有f(x+6)=f(x)+f(3),x1,x2∈[0,3],x1≠x2时,有
f(x1)-f(x2)
x1-x2
>0
成立,下列结论中错误的是(  )
A、f(3)=0
B、直线x=-6是函数y=f(x)的图象的一条对称轴
C、函数y=f(x)在[-9,9]上有四个零点
D、函数y=f(x)在[-9,-6]上为增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-ax+1,若存在t∈[1,3],使f(-t2-1)=f(2t),求实数a的取值范围.

查看答案和解析>>

同步练习册答案