精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x+ln
1-x
1+x

(1)求函数的定义域,并求f(
1
2010
)+f(-
1
2010
)
的值
(2)若-1<a<1,当x∈[-a,a]时,f(x)是否存在最小值,若存在,求出最小值; 若不存在,请说明理由.
分析:(1)根据使函数解析式有意义的原则,我们可以列出让函数解析式有意义的不等式,解不等式可求出函数的定义域,分析出函数奇偶性,根据奇偶性可以得到f(
1
2010
)+f(-
1
2010
)
的值
(2)求出函数的导函数,可判断出函数在[-1,1]上的单调性,进而可得x∈[-a,a]时,f(x)存在最小值f(a),代入计算即可得到答案.
解答:解:(1)由
1-x
1+x
>0
得-1<x<1,
∴函数f(x)的定义域是(-1,1)(3分)
f(-x)=x+ln
1+x
1-x
=x-ln
1-x
1+x
=-f(x)

∴f(x)是奇函数
f(
1
2010
)+f(-
1
2010
)
=0(3分)
(2)∵f′(x)=-1-
2
1-x2
=
x2-3
1-x2
<0
对-1<x<1恒成立
∴f(x)在(-1,1)上是减函数(5分)
f(x)min=f(a)=-a+ln
1+a
1-a
(3分)
点评:本题考查的知识点是函数单调性的性质,函数定义域及其求法,函数奇偶性的判断,函数的值,是对函数三要素和性质比较综合的考查,掌握函数性质的定义及判断方法是解答关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案