精英家教网 > 高中数学 > 题目详情
20.在平面直角坐标系xOy中,将曲线C1:x2+y2=1上的所有点的横坐标伸长为原来的$\sqrt{3}$倍,纵坐标伸长为原来的2倍后,得到曲线C2;在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程是ρ(2cosθ-sinθ)=6.
(Ⅰ)写出曲线C2的参数方程和直线l的直角坐标方程;
(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离d最大,并求出此最大值.

分析 (Ⅰ)先求出曲线C2方程,消去参数即可得到直线的直角坐标方程.
(Ⅱ)利用点到直线的距离公式进行转化求解.

解答 解:(Ⅰ)由题意知,曲线C2方程为${(\frac{x}{{\sqrt{3}}})^2}+{(\frac{y}{2})^2}=1$,参数方程为$\left\{\begin{array}{l}x=\sqrt{3}cosφ\\ y=2sinφ\end{array}\right.$(φ为参数).直线l的直角坐标方程为2x-y-6=0.…(6分)
(Ⅱ)设$P(\sqrt{3}cosφ,2sinφ)$,则点P到直线l的距离为$d=\frac{{|2\sqrt{3}cosφ-2sinφ-6|}}{{\sqrt{5}}}=\frac{{|4sin({{60}°}-φ)-6|}}{{\sqrt{5}}}$,
∴当sin(60°-φ)=-1时,d取最大值$2\sqrt{5}$,此时取φ=150°,点P坐标是$(-\frac{3}{2},1)$.…(10分)

点评 本题主要考查参数方程和普通方程的关系,以及点到直线距离的应用,考查学生的转化能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x3-ax在[1,2]上是单调增函数,则a的最大值是(  )
A.0B.1C.3D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{2}+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线M的方程为ρ2(1+sin2θ)=1.
(1)求曲线M的直角坐标方程;
(2)若直线l与曲线M只有一个公共点,求倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a≥1,f(x)=x|x-a|$+\frac{3}{2}$,若f(x)≥a对任意x∈[1,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-1.
(1)求证:f(x)≥x;
(2)若存在x0>0,使得对任意的x∈(0,x0),恒有kf(x)<x,求k的范围;
(3)若存在t>0,使得对任意的x∈(0,t),恒有|kf(x)-x|<f2(x),求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x与y之间的几组数据如表:
x123456
y021334
假设根据如表数据所得线性回归直线l的方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,则l一定经过的点为(  )
A.(1,0)B.(2,2)C.($\frac{7}{2}$,$\frac{13}{6}$)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了解学生的数学成绩与物理成绩的关系,在一次考试中随机抽取5名学生的数学、物理成绩如表所示,则y对x的线性回归方程为(  )
学生A1A2A3A4A5
数学成绩x(分)8991939597
物理成绩y(分)8789899293
A.$\widehaty$=x+2B.$\widehaty$=x-2C.$\widehaty$=0.75x+20.25D.$\widehaty$=1.25x-20.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=lnx+2x,若f(x2)<f(6-x),则实数x的取值范围是(-3,0)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.我市教育局对某校高中文科数学进行教学调研,从该校文科生中随机抽取40名学生的数学成绩进行统计,将他们的成绩分成六段得到如图所示的频率分布直方图.
(Ⅰ)求这40个学生数学成绩的中位数的估计值;
(Ⅱ)若从数学成绩[80,100)内的学生中任意抽取2人,求成绩在[80,90)中至少有一人的概率.

查看答案和解析>>

同步练习册答案