精英家教网 > 高中数学 > 题目详情
8.设a≥1,f(x)=x|x-a|$+\frac{3}{2}$,若f(x)≥a对任意x∈[1,2]恒成立,求实数a的取值范围.

分析 设g(x)=x|x-a|,由题意可以得到g(x)min≥a-$\frac{3}{2}$,分1≤a≤2或a>2,讨论即可求出a的取值范围.

解答 解:∵x|x-a|$+\frac{3}{2}$≥a对任意x∈[1,2]恒成立,
即x|x-a|≥a-$\frac{3}{2}$恒成立,
设g(x)=x|x-a|,在x∈[1,2]恒成立有g(x)≥a-$\frac{3}{2}$,
∴g(x)min=a-$\frac{3}{2}$,
当1≤a≤2时,g(x)=x|x-a|=$\left\{\begin{array}{l}{x(x-a),a≤x<2}\\{x(a-x),1≤x<a}\end{array}\right.$
故g(x)在[1,2]上的最小值为g(a)=0,
即0≥a-$\frac{3}{2}$,解得1≤a≤$\frac{3}{2}$,
当a>2时,g(x)=x(a-x),g(x)在x∈[1,2]恒成立有
g(x)≥a-$\frac{3}{2}$,
故$\left\{\begin{array}{l}{g(1)≥a-\frac{3}{2}}\\{g(2)≥a-\frac{3}{2}}\end{array}\right.$,即$\left\{\begin{array}{l}{a-1≥a-\frac{3}{2}}\\{2(a-2)≥a-\frac{3}{2}}\end{array}\right.$,
解得a≥$\frac{5}{2}$
综上所述a的取值范围为[1,$\frac{3}{2}$]∪[$\frac{5}{2}$,+∞).

点评 本题考查带绝对值的函数,考查函数恒成立问题,突出考查转化思想与分类讨论思想、方程思想的综合应用应用,考查逻辑思维能力与运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.化简:
(1)$\sqrt{8{a}^{4}b}$;
(2)$\sqrt{-4{a}^{3}{b}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某个服装店经营某种服装,在某周内获纯利y(元),与该周每天销售这种服装件数x之间的一组数据关系见表:
x3456789
y66697381899091
已知$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{7}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{7}$xiyi=3487.参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.残差:$\widehat{e}$=yi-$\widehat{y}$i
(1)求$\overline{x}$,$\overline{y}$;
(2)在直角坐标系上画出散点图;
(3)判断纯利y与每天销售件数x之间是否线性相关,如果线性相关,求出回归方程(保留两位小数).
(4)如果纯利y与每天销售件数x之间线性相关,计算相应于点(9,91)的残差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程$\widehat{y}$=bx+a,
(3)试预测加工20个零件需要多少小时?
用最小二乘法求线性回归方程系数公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_4^2-n{{\overline x}^2}}}},\hat a=\overline y-\overline b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某三棱锥的三视图如图所示,则该三棱锥中最长棱的棱长为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知不等式(x-1)m<2x-1对x∈(0,3)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,将曲线C1:x2+y2=1上的所有点的横坐标伸长为原来的$\sqrt{3}$倍,纵坐标伸长为原来的2倍后,得到曲线C2;在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程是ρ(2cosθ-sinθ)=6.
(Ⅰ)写出曲线C2的参数方程和直线l的直角坐标方程;
(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离d最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了解心肺疾病是否与年龄相关,现随机抽取80名市民,得到数据如下表:
患心肺疾病不患心肺疾病合计
大于40岁16
小于或等于40岁12
合计80
已知在全部的80人中随机抽取1人,抽到不患心肺疾病的概率为$\frac{2}{5}$
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.025的前提下认为患心肺疾病与年龄有关?
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在如图的空间直角坐标系中,正方体ABCD-A1B1C1D1的棱长为1,P是线段BD1上的一点,且BP=2PD1,则点P的坐标是(  )
A.($\frac{1}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)B.($\frac{2}{3}$,$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)D.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{2}{3}$)

查看答案和解析>>

同步练习册答案