4£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cosa\\ y=\sqrt{3}sina\end{array}$£¨aΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñsin£¨{¦È+\frac{¦Ð}{4}}£©=2\sqrt{2}$£®
£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÉèPΪÇúÏßC1Éϵ͝µã£¬ÇóµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉcos2¦Á+sin2¦Á=1£¬ÄÜÇó³öÇúÏßC1µÄÆÕͨ·½³Ì£¬ÓÉÕýÏÒ¼Ó·¨¶¨ÀíºÍ¦Ñcos¦È=x£¬¦Ñsin¦È=y£¬ÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÓɵãPµ½Ö±Ïß¾àÀ빫ʽºÍÈý½Çº¯ÊýÐÔÖÊ£¬ÄÜÇó³öµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ£®

½â´ð ½â£º£¨1£©¡ßÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cosa\\ y=\sqrt{3}sina\end{array}$£¨aΪ²ÎÊý£©£¬
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪ${x}^{2}+\frac{{y}^{2}}{3}$=1£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñsin£¨{¦È+\frac{¦Ð}{4}}£©=2\sqrt{2}$£¬
¡à$¦Ñ£¨sin¦Ècos\frac{¦Ð}{4}+cos¦Èsin\frac{¦Ð}{4}£©=2\sqrt{2}$£¬¡à¦Ñsin¦È+¦Ñcos¦È=4£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx+y-4=0£®
£¨2£©¡ßPΪÇúÏßC1Éϵ͝µã£¬¡àP£¨cos¦Á£¬$\sqrt{3}sin¦Á$£©£¬
¡àµãPµ½C2ÉϵãµÄ¾àÀëd=$\frac{|cos¦È+\sqrt{3}sin¦È-4|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}|2sin£¨¦È+\frac{¦Ð}{6}£©-4|$¡Ý$\sqrt{2}$£®
¡àµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵÊÇ$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì¡¢ÆÕͨ·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éµãµ½Ö±ÏߵľàÀëµÄ×îСֵµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪעÒâµãµ½Ö±Ïß¾àÀ빫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èôº¯Êýy=f£¨x£©µÄͼÏóÓëy=lnxµÄͼÏó¹ØÓÚy=x¶Ô³Æ£¬Ôòf£¨1£©=£¨¡¡¡¡£©
A£®1B£®eC£®e2D£®ln£¨e-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÃüÌâ¡°¶ÔÈÎÒâʵÊýx£¬x£¾0¡±µÄ·ñ¶¨ÊÇ?x¡ÊR£¬x¡Ü0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑ֪ȫ¼¯U={2£¬3£¬5}£¬¼¯ºÏA={2£¬|a-5|}£¬∁UA={5}£®ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$²»¹²Ïߣ¬ÇÒ$\overrightarrow{c}$=¦Ë1$\overrightarrow{a}$+¦Ë2$\overrightarrow{b}$£¨¦Ë1£¬¦Ë2¡ÊR£©£¬Èô$\overrightarrow{c}$¡Î$\overrightarrow{b}$£¬Ôò¦Ë1=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÔÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µãΪ¼«µã£¬x ÖáµÄÕýÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Á½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=t+1}\\{y=t-2}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²CµÄ¼«×ø±ê·½³ÌÊǦÑ=4cos¦È£®
£¨1£©ÇóÖ±ÏßlºÍÔ²CµÄÆÕͨ·½³Ì£¬
£¨2£©ÇóÖ±Ïßl±»Ô²C½ØµÃµÄÏÒ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1£º$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=-1+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬t¡Ù0£©£¬ÆäÖÐ0¡Ü¦Á£¼¦Ð£¬ÔÚÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2£º¦Ñ=2sin¦È£¬C3£º$¦Ñ=2\sqrt{3}cos¦È$£®
£¨1£©ÇóC2ÓëC3½»µãµÄÖ±½Ç×ø±ê£»
£¨2£©ÈôC1ÓëC2ÏཻÓÚµãA£¬B£¬µãM£¨-1£¬-1£©£¬Çó|MA|•|MB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÖ±ÏßlµÄ·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\sqrt{2}$£¬ÇúÏßCµÄ·½³ÌΪ$\left\{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨1£©°ÑÖ±ÏßlºÍÇúÏßCµÄ·½³Ì·Ö±ð»¯ÎªÖ±½Ç×ø±ê·½³ÌºÍÆÕͨ·½³Ì£»
£¨2£©ÇóÇúÏßCÉϵĵ㵽ֱÏßl¾àÀëµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®µãA£¨2£¬3£¬5£©¹ØÓÚ×ø±êÆ½ÃæxOyµÄ¶Ô³ÆµãBµÄ×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨2£¬3£¬-5£©B£®£¨2£¬-3£¬5£©C£®£¨-2£¬3£¬5£©D£®£¨-2£¬-3£¬5£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸