已知x∈R,且|x|≠1,则x6+1与x4+x2的大小关系是________.
科目:高中数学 来源: 题型:
已知数列{an}的各项均为正数,对任意n∈N*,它的前n项和Sn满足Sn=
(an+1)(an+2),并且a2,a4,a9成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=(-1)n+1anan+1,Tn为数列{bn}的前n项和,求T2n.
查看答案和解析>>
科目:高中数学 来源: 题型:
数列{an}中,a1=
,前n项和Sn满足Sn+1-Sn=(
)n+1(n∈N*).
(1)求数列{an}的通项公式an以及前n项和Sn;
(2)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知不等式ax2-bx-1≥0的解是[-
,-
],则不等式x2-bx-a<0的解是( )
A.(2,3) B.(-∞,2)∪(3,+∞)
C.(
,
) D.(-∞,
)∪(
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
某商店预备在一个月内分批购买每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用f(x);
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
如右图所示,函数y=2cos(ωx+θ)(x∈R,ω>0,0≤θ≤
)的图象与y轴交于点(0,
),且该函数的最小正周期为π.
![]()
(1)求θ和ω的值;
(2)已知点A(
,0),点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=
,x0∈[
,π]时,求x0的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com