精英家教网 > 高中数学 > 题目详情
11.已知集合$M=\left\{{x|\frac{3}{x^2}<1}\right\},N=\left\{{n|1≤{2^n}≤13且n∈Z}\right\}$,则N∩M=(  )
A.{2,3}B.{3}C.$[{0,\sqrt{3}})$D.[2,+∞)

分析 求出M中不等式的解集确定出M,找出N中满足不等式的整数n的值确定出N,找出M与N的交集即可.

解答 解:由M中不等式变形得:x2>3,
解得:x<-3或x>3,即M=(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞),
由N中1≤2n≤13,得到n=1,2,3,即N={1,2,3},
则M∩N={2,3},
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系xOy中,已知圆C:x2+y2-6x+5=0,点A,B在圆上,且AB=2$\sqrt{3}$则|$\overrightarrow{OA}+\overrightarrow{OB}$|的取值范围是[4,8].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC的三内角A,B,C所对边长分别是a,b,c,设向量$\overrightarrow n=(\sqrt{3}a+c,sinB-sinA)$,$\overrightarrow m=(a+b,sinC)$,若$\overrightarrow m∥\overrightarrow n$,则角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设$\overrightarrow{a_k}=({cos\frac{kπ}{6},sin\frac{kπ}{6}+cos\frac{kπ}{6}}),k∈Z,则\overrightarrow{{a_{2015}}}•\overrightarrow{{a_{2016}}}$=(  )
A.$\sqrt{3}$B.$\sqrt{3}-\frac{1}{2}$C.$2\sqrt{3}-1$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知幂函数f(x)=xα的图象过点($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),则α=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α是第二象限的角,tanα=-$\frac{1}{2}$,则cosα=-$\frac{2\sqrt{5}}{5}$,tan2α=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知命题p:方程$\frac{{x}^{2}}{t+2}$+$\frac{{y}^{2}}{t-10}$=1表示双曲线,命题q:1-m<t<1+m(m>0). 若q是p的充分非必要条件,
试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)在[0,+∞)上递增,$f(\frac{1}{3})=0$,已知g(x)=-f(|x|),满足$g({log_{\frac{1}{8}}}x)>0$的x的取值范围是(  )
A.(0,+∞)B.$(0,\frac{1}{2})∪(2,+∞)$C.$(0,\frac{1}{8})∪(\frac{1}{2},2)$D.$(\frac{1}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直角坐标系的原点是极点,x轴正半轴为极轴,自极点O作直线与曲线pcosθ=4相交于点Q,在OQ上有一动点P满足|OP|•|OQ|=12,若点P的轨迹为曲线C2,方程$\left\{\begin{array}{l}{x=1+t}\\{y=\sqrt{2}t}\end{array}\right.$(t为参数)表示的曲线为C1
(1)求C1的极坐标方程;
(2)若曲线C1与C2交于点A、B,求A、B两点的距离|AB|.

查看答案和解析>>

同步练习册答案