精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱柱的底面是平行四边形,且的中点,平面,若,试求异面直线所成角的余弦值_________

【答案】

【解析】

BB1的中点F,连接EFAF,则异面直线所成角为∠AEF(或其补角),在三角形△AEF中根据边角关系得到答案.

BB1的中点F,连接EFAF,连接B1C

∵△BB1C中,EF是中位线,∴EFB1C

A1B1ABCDA1B1ABCD

∴四边形ABCD是平行四边形,可得B1CA1D

EFA1D

可得∠AEF(或其补角)是异面直线AEA1D所成的角.

∵△CDE中,,∴DECDA1E

AEAB1

A1A,由此可得BFAFEF

cosAEF,即异面直线AEA1D所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三国时期赵爽在《勾股方圆图注》中,对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为几何解释的是(

A.如果,那么

B.如果,那么

C.如果,那么

D.对任意实数,有,当且仅当时,等号成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年滕州某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元.每生产(百辆)新能源汽车,需另投入成本万元,且.由市场调研知,每辆车售价5万元,且生产的车辆当年能全部销售完.

1)求出2019年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售-成本)

22019年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣(a∈R)

(Ⅰ)判断函数f(x)在R上的单调性,并用单调函数的定义证明;

(Ⅱ)是否存在实数a使函数f(x)为奇函数?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别为角的对边,若.

1)判断的形状,并证明;

2)若为满足题设条件的所有中线段上任意一点(可与端点重合),求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的极坐标方程和曲线的直角坐标方程;

(2)已知点是曲线上一点,点是曲线上一点,的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图,在五面体ABCDEF中,四边形EDCF是正方形,

(1)证明:

(2)已知四边形ABCD是等腰梯形,且求五面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调查,某商品每吨的价格为万元时,该商品的月供给量为吨,;月需求量为吨,,当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.

1)已知,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);

2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点在轴上,虚轴长为4,且与双曲线有相同渐近线.

1)求双曲线的方程.

2)过点的直线与双曲线的异支相交于两点,若,求直线的方程.

查看答案和解析>>

同步练习册答案