精英家教网 > 高中数学 > 题目详情

【题目】2019年滕州某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元.每生产(百辆)新能源汽车,需另投入成本万元,且.由市场调研知,每辆车售价5万元,且生产的车辆当年能全部销售完.

1)求出2019年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售-成本)

22019年产量为多少百辆时,企业所获利润最大?并求出最大利润.

【答案】(1)(2)2019年生产100百辆时,该企业获得利润最大,且最大利润为1800万元

【解析】

1)根据年利润=销售额﹣投入的总成本﹣固定成本,分0x40和当x≥40两种情况得到Lx的分段函数关系式;

2)当0x40时根据二次函数求最大值的方法来求L的最大值,当x≥40时,利用基本不等式来求L的最大值,最后综合即可.

1)当时,

时,

所以

2)当时,

时,

时,

.

(当且仅当时,成立)

因为

所以,当时,即2019年生产100百辆时,该企业获得利润最大,且最大利润为1800万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司一年需购买某种原料400吨,设公司每次都购买吨,每次运费为4万元,一年的总存储费用为万元.

1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?

2)要使一年的总运费与总存储费用之和不超过200万元,则每次购买量在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进入冬天,大气流动性变差,容易形成雾握天气,从而影响空气质量.某城市环保部门试图探究车流量与空气质量的相关性,以确定是否对车辆实施限行.为此,环保部门采集到该城市过去一周内某时段车流量与空气质量指数的数据如下表:

(1)根据表中周一到周五的数据,求y关于x的线性回归方程。

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?

注:回归方程中斜率和截距最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:

使用年限

2

3

4

5

6

维修费用

2.2

3.8

5.5

6.5

7.0

(1)画出散点图;

(2)求关于的线性回归方程;

(3)估计使用年限为10年时所支出的年平均维修费用是多少?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照国家质量标准:某种工业产品的质量指标值落在[100,120)内,则为合格品,否则为不合格品.某企业有甲乙两套设备生产这种产品,为了检测这两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本对规定的质量指标值进行检测.表1是甲套设备的样本频数分布表,图1是乙套设备的样本频率分布直方图.

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

4

19

20

5

1

表1:甲套设备的样本频数分布表

(1)将频率视为概率,若乙套设备生产了5000件产品,则其中合格品约有多少件?

(2)填写下面2×2列联表,并根据列联表判断是否有95%的把握认为这种产品的质量指标值与甲乙两套设备的选择有关:

甲套设备

乙套设备

合计

合格品

不合格品

合计

(3)根据表和图,对甲、乙两套设备的优劣进行比较.参考公式及数据:x2=

P(Х2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革方案指出:该省高考考生总成绩将由语文数学英语3门统一高考成绩和学生从思想政治、历史、地理、物理、化学、生物6门等级性考试科目中自主选择3个,按获得该次考试有效成绩的考生(缺考考生或未得分的考生除外)总人数的相应比例的基础上划分等级,位次由高到低分为A、B、C、D、E五等21级,该省的某市为了解本市万名学生的某次选考化学成绩水平,统计在全市范围内选考化学的原始成绩,发现其成绩服从正态分布 ,现从某校随机抽取了名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.

(1)估算该校名学生成绩的平均值(同一组中的数据用该组区间的中点值作代表);

(2)现从该校名考生成绩在的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前名的人数记为,求随机变量的分布列和数学期望.参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线轴交于点,与曲线交于点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱的底面是平行四边形,且的中点,平面,若,试求异面直线所成角的余弦值_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数,),已知直线的方程为.

(1)设是曲线上的一个动点,当时,求点到直线的距离的最小值;

(2)若曲线上的所有点均在直线的右下方,求的取值范围.

查看答案和解析>>

同步练习册答案