【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数,),已知直线的方程为.
(1)设是曲线上的一个动点,当时,求点到直线的距离的最小值;
(2)若曲线上的所有点均在直线的右下方,求的取值范围.
科目:高中数学 来源: 题型:
【题目】2019年滕州某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元.每生产(百辆)新能源汽车,需另投入成本万元,且.由市场调研知,每辆车售价5万元,且生产的车辆当年能全部销售完.
(1)求出2019年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售-成本)
(2)2019年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)如图,在五面体ABCDEF中,四边形EDCF是正方形,.
(1)证明:;
(2)已知四边形ABCD是等腰梯形,且,求五面体ABCDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某商品每吨的价格为万元时,该商品的月供给量为吨,;月需求量为吨,,当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)已知,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):
若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。
(1)如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了100人进行调查,经统计男生与女生的人数比为,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.
(1)完成列联表,并判断能否有把握认为“对冰壶运动是否有兴趣与性别有关”?
有兴趣 | 没有兴趣 | 合计 | |
男 | 20 | ||
女 | 15 | ||
合计 | 100 |
(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的焦点在轴上,虚轴长为4,且与双曲线有相同渐近线.
(1)求双曲线的方程.
(2)过点的直线与双曲线的异支相交于两点,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在(﹣1,1)上的奇函数,且f().
(Ⅰ)求实数m,n的值,并用定义证明f(x)在(﹣1,1)上是增函数;
(Ⅱ)设函数g(x)是定义在(﹣1,1)上的偶函数,当x∈[0,1)时,g(x)=f(x),求函数g(x)的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com