精英家教网 > 高中数学 > 题目详情

【题目】从集市上买回来的蔬菜仍存有残留农药,食用时需要清洗数次,统计表中的表示清洗的次数,表示清洗次后千克该蔬菜残留的农药量(单位:微克).

(1)在如图的坐标系中,描出散点图,并根据散点图判断,哪一个适宜作为清洗次后千克该蔬菜残留的农药量的回归方程类型;(给出判断即可,不必说明理由)

(2)根据判断及下面表格中的数据,建立关于的回归方程;

表中.

(3)对所求的回归方程进行残差分析.

附:①线性回归方程中系数计算公式分别为

说明模拟效果非常好;

.

【答案】(1)散点图见解析,用作为清洗次后千克该蔬菜残留的农药量的回归方程类型

(2) (3)回归模拟的拟合效果非常好

【解析】分析:(1)将表格中的点描上去,即可判断出来散点图类似指数型增长;

2)按照给出的公式进行计算即可;

3)列出表格算出相应的值与给出的值进行比较说明模拟效果非常好。

详解:(1)散点图如图,

作为清洗次后千克该蔬菜残留的农药量的回归方程类型.

(2)由题知

故所求的回归方程为.

(3)列表如下:

所以

所以回归模拟的拟合效果非常好.

点晴:变量间的相关性也是每年高考的必考题,大家在拿到这类题目的时候需按照公式的需求进行运算,运算量相对较大,关注计算是重点。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某粮食店经销小麦,年销售量为6000千克,每千克小麦进货价为2.8元,销售价为3.4元,全年进货若干次,每次的进货量均为千克(),运费为100/次,并且全年小麦的总存储费用为元.

1)用(千克)表示该粮食店经销小麦的年利润(元);

2)每次进货量为多少千克时,能使年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形中,分别是的中点将分别沿折起,使重合于点.则下列结论正确的是( )

A.

B. 平面

C. 二面角的余弦值为

D. 在平面上的投影是的外心

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的单调区间及最值.

)若对恒成立,求的取值范围.

)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)求函数的对称轴方程;

(3)当时,方程有两个不同的实根,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答下列各题:

(1)已知扇形的周长为10cm,面积为4cm2,求扇形圆心角的弧度数.

(2)已知一扇形的圆心角是72°,半径等于20cm,求扇形的面积.

(3)已知一扇形的周长为40cm,求它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初始溶液含杂质2%,每过滤一次可使杂质含量减少.

1)写出杂质含量y与过滤次数n的函数关系式;

2)过滤7次后的杂质含量是多少?过滤8次后的杂质含量是多少?至少应过滤几次才能使产品达到市场要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线,在圆内任取一点,则到直线的距离大于2的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

1)求曲线的极坐标方程与直线的直角坐标方程;

2)在曲线上取两点与原点构成,且满足,求面积的最大值.

查看答案和解析>>

同步练习册答案