精英家教网 > 高中数学 > 题目详情
设变量x,y满足约束条件
x≥-1
y≥x
3x+2y≤10
,则z=2x+y的最大值为(  )
A、-3
B、
9
2
C、6
D、10
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:不等式组对应的平面区域如图:
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大,
y=x
3x+2y=10
,解得
x=2
y=2

即A(2,2),
此时tmax=2×2+2=6,
故选:C.
点评:本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,定义两点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.现有下列命题:
①若P,Q是x轴上两点,则d(P,Q)=|x1-x2|;
②已知P(1,3),Q(sin2a,cos2a)(a∈R),则d(P,Q)为定值;
③原点O到直线x-y+1=0上任一点P的直角距离d(O,P)的最小值为
2
2

④设A(x,y)且x∈Z,y∈Z,若点A是在过P(1,3)与Q(5,7)的直线上,且点A到点P与Q的“直角距离”之和等于8,那么满足条件的点A只有5个.
其中的真命题是
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=log3
1
2
,b=log0.62,c=
33
,则(  )
A、b<a<c
B、a<b<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

若x、y满足不等式
x+y-3≤0
x-y+3≥0
y≥-1
,则z=3x+y的最大值为(  )
A、11B、-11
C、13D、-13

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的T为(  )
A、26B、57C、63D、120

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)在x0处可导,a为常数,则
lim
△x→0
f(x0+a△x)-f(x0-a△x)
△x
=(  )
A、f′(x0
B、2af′(x0
C、af′(x0
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-2y+2=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆上位于x轴上方的动点,直线AS,BS与直线l:x=4分别交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)(ⅰ)设直线AS,BS的斜率分别为k1,k2,求证k1•k2为定值;
(ⅱ)求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是平行四边形,AD=2AB,∠ABC=60°,PA⊥面ABCD,且PA=AD.若E为PC中点,F为线段PD上的点,且PF=2FD.
(1)求证:BE∥平面ACF;
(2)求PC与平面PAD所成角的正弦值.

查看答案和解析>>

同步练习册答案