精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域、值域均为R,f(x)的反函数为f-1(x),且对于任意的x∈R,均有f(x)+f-1(x)<
5
2
x
,定义数列{an},a0=8,a1=10,an=f(an-1)(n∈N*).
(Ⅰ)求证:an+1+an-1
5
2
an
(n∈N*).
(Ⅱ)设bn=an+1-2an(n∈N*),求证:bn<(-6)•2-n(n∈N*);
(Ⅲ)是否存在常数A,B同时满足条件:
①当n=0,1时,an=
A•4n+B
2n

②当n≥2时(n∈N*,)an
A•4n+B
2n
.如果存在,求出A,B的值,如果不存在,说明理由.
分析:(Ⅰ)由an+1+an-1=f(an)+f-1(an)<
5
2
an
,知an+1+an-1
5
2
an

(Ⅱ)an+1-2an
1
2
(an-2an-1)
,知bn
1
2
bn-1
,由此得bn
1
2
bn-1<(
1
2
)2bn-2<…<(
1
2
)nb0
,由此能证明bn<-6•2-n
(Ⅲ)若存在满足①②的A,B,由①得
a0=A+B=8
a1=
4A+B
2
=10
A=4
B=4
,由此能够证明存在A=B=4满足①,②.
解答:解(Ⅰ)an+1+an-1=f(an)+f-1(an)<
5
2
an
,即an+1+an-1
5
2
an

(Ⅱ)由(Ⅰ)得an+1-2an
1
2
(an-2an-1)

即,bn
1
2
bn-1
,由此得bn
1
2
bn-1<(
1
2
)2bn-2<…<(
1
2
)nb0
,而b0=a1-2a0=-6,
所以bn<-6•2-n
(Ⅲ)若存在满足①②的A,B,
由①得
a0=A+B=8
a1=
4A+B
2
=10
A=4
B=4

下证A=B=4满足②,即证2nan<4n+1+4
由(Ⅱ)得2n+1an+1-4•2nan+12<0,设2nan=Un
则有Un+1<4Un-12,即Un+1-4<4(Un-4),
由此得Un-4<4(Un-1-4)<42(Un-2-4)<…<4n(U0-4)
而U0=20a0=8,
所以Un-4<4n+1即2nan<4n+1+4由此可知A=B=4满足②,
所以存在A=B=4满足①,②.
点评:本题考查不等式的综合应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案