精英家教网 > 高中数学 > 题目详情
对于函数f(x),如果存在锐角θ使得f(x)的图象绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数f(x)具备角θ的旋转性,下列函数具有角
π
4
的旋转性的是(  )
分析:若若函数f(x)逆时针旋转角
π
4
后所得曲线仍是一函数,根据函数的定义中的“唯一性”可得函数f(x)的图象与任一斜率为1的直线y=x+b均不能有两个以上的交点,逐一分析四个答案中的函数是否满足这一性质,可得答案.
解答:解:若函数f(x)逆时针旋转角
π
4
后所得曲线仍是一函数,
则函数f(x)的图象与任一斜率为1的直线y=x+b均不能有两个以上的交点
A中函数y=
x
与直线y=x有两个交点,不满足要求;
B中函数y=lnx与直线y=x-1有两个交点,不满足要求;
C中函数y=(
1
2
)
x
与直线y=x+b均有且只有一个交点,满足要求;
D中函数y=x2与直线y=x有两个交点,不满足要求;
故选C
点评:本题考查的知识点是函数的定义,其中根据函数的定义分析出函数f(x)的图象与任一斜率为1的直线y=x+b均不能有两个以上的交点,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,对于函数f(x)=x3(x>0)上任意两点A(a,a3),B(b,b3)线段AB在弧线段AB的上方,
AC
=
CB
,则由图中点C在C’上方可得不等式
a3+b3
2
(
a+b
2
)3
,请分析函数y=lgx(x>0)的图象,类比上述不等式可以得到的不等式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个判断:
①定义在R上的奇函数f(x),当x>0时f(x)=x2+2,则函数f(x)的值域为{y|y≥2或y≤-2};
②若不等式x3+x2+a<0对一切x∈[0,2]恒成立,则实数a的取值范围是{a|a<-12};
③当f(x)=log3x时,对于函数f(x)定义域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

④设g(x)表示不超过t>0的最大整数,如:[2]=2,[1.25]=1,对于给定的n∈N+,定义
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),则当x∈[
3
2
,2)时函数
C
x
8
的值域是(4,
16
3
]

上述判断中正确的结论的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

定义Mxn=x(x+1)(x+2)…(x+n-1)(x∈R,n∈N*),如M-44=(-4)×(-3)×(×2)×(-1)=24.对于函数f(x)=Mx-13,给出下列四个命题:
①f (x)的最大值为
2
3
9
;②f (x)为奇函数;③f(x)的图象不具备对称性;④f (x)在(-
3
3
3
3
)
上是减函数,
真命题是
②④
②④
(填命题序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,对于函数f(x)=x2(x>0)的图象上不同两点A(a,a2)、B(b,b2),直线段AB
必在弧线段AB的上方,设点C分
AB
的比为λ(λ>0),则由图象中点C在点C'上方可得不等式
a2b2
1+λ
>(
a+λb
1+λ
)2
.请分析函数y=lnx(x>0)的图象,类比上述不等式,可以得到的不等式是
lna+λlnb
1+λ
<ln
a+λb
1+λ
lna+λlnb
1+λ
<ln
a+λb
1+λ

查看答案和解析>>

科目:高中数学 来源: 题型:

下列4个命题:
①已知函数y=2sin(x+?)(0<?<π)的图象如图所示,则φ=
π
6
5
6
π;
②在△ABC中,∠A>∠B是sinA>sinB的充要条件;
③定义域为R的奇函数f(x)满足f(1+x)=-f(x),则f(x)的图象关于点(
1
2
,0)
对称;
④对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0,则f(x)在(a,b)内至多有一个零点;其中正确命题序号

查看答案和解析>>

同步练习册答案