精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
1-2x
1+2x

(1)判断函数f(x)的奇偶性,并用奇偶性的定义证明;
(2)判断函数f(x)的单调性,并用单调性的定义证明;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.
考点:函数恒成立问题,函数单调性的判断与证明,函数奇偶性的判断
专题:函数的性质及应用
分析:(1先求函数的定义域,看定义域是否关于原点对称,再用奇偶性的定义证明;
(2)先把y=f(x)的表达式变形为f(x)=
2-(1+2x)
1+2x
=
2
1+2x
-1
,再用单调性的定义证明;
(3)由第(2)问,函数f(x)为减函数,不等式f(t2-2t)+f(2t2-k)<0恒成立,即不等式f(t2-2t)<f(k-2t2)恒成立,
从而不等式t2-2t>k-2t2恒成立.
解答: 解:(1)函数f(x)=
1-2x
1+2x
为偶函数,下面给出证明:
?x∈R,1+2x≠0,故函数的定义域为R,∴定义域关于原点对称,
f(-x)=
1-2-x
1+2-x
=
2x-2-x•2x
2x+2-x•2x
=
2x-1
2x+1
=-
1-2x
1+2x
=-f(x)

∴y=f(x)为奇函数.
(2)f(x)=
2-(1+2x)
1+2x
=
2
1+2x
-1

设x1<x2,∴f(x1)-f(x2)=(
2
1+2x1
-1)-(
2
1+2x2
-1)
=
2
1+2x1
-
2
1+2x2
=
2(2x2-2x1)
(1+2x1)(1+2x2)

∵函数y=2x为增函数,又∵x1<x2,∴2x2>2x1,∴2x2-2x1>0
(1+2x1)(1+2x2)>0,∴
2(2x2-2x1)
(1+2x1)(1+2x2)
>0
,∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)在(-∞,+∞)上为减函数.
(3)f(t2-2t)+f(2t2-k)<0可得f(t2-2t)<-f(2t2-k)=f(k-2t2),
∴不等式f(t2-2t)+f(2t2-k)<0恒成立,即不等式f(t2-2t)<f(k-2t2)恒成立,从而不等式t2-2t>k-2t2恒成立,
∴k<3t2-2t,∴k小于3t2-2t的最小值即可,
3t2-t=3(t-
1
6
)2-
1
12
≥-
1
12
,∴k<-
1
12
点评:本题考查函数定义域、函数奇偶性的判断,利用单调性的定义证明函数的单调性,属基础题,同时利用单调性解不等式,恒成立的问题转化为求函数的最值,是常见题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

A={-1,1,2},B={-2,-1,0},则A∪B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数定义域为[-3,-2]的函数y=
2
x
-3x的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x

(1)判断f(x)奇偶性并证明;
(2)判断函数f(x)在(0,+∞)上的单调性?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x(x2-1)的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P(a,1)在椭圆
x2
2
+
y2
3
=1的外部,则a的取值范围是(  )
A、(-
2
3
3
2
3
3
)
B、(-∞,-
2
3
3
)∪(
2
3
3
,+∞)
C、(
4
3
,+∞)
D、(-∞,-
4
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若二次函数f(x)满足:f(2x)+f(3x+1)=13x2+6x-1.求f(x)解析式.
(2)已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定的函数f(x)=2x-2-x,有下列四个结论:
①f(x)的图象关于原点对称;    
②f(x)在R上是增函数;
③f(|x|)的图象关于y轴对称;  
④f(|x|)的最小值为0;
其中正确的是
 
(填写正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

本大题共6小题,共75分.解答应写出文字说明,证明过程或严三步骤.
已知向量
m
=(sinωx,cosωx),
n
=(cosx,cosx),其中ω>0,函数f(x)=2
m
n
-1的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在[
π
6
π
4
]上的最大值.

查看答案和解析>>

同步练习册答案