精英家教网 > 高中数学 > 题目详情
若点P(a,1)在椭圆
x2
2
+
y2
3
=1的外部,则a的取值范围是(  )
A、(-
2
3
3
2
3
3
)
B、(-∞,-
2
3
3
)∪(
2
3
3
,+∞)
C、(
4
3
,+∞)
D、(-∞,-
4
3
)
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程,圆锥曲线中的最值与范围问题
分析:首先求出直线和椭圆的交点坐标,进一步利用点在椭圆外求出a的范围.
解答: 解:设直线y=1与椭圆
x2
2
+
y2
3
=1的交点坐标为A(x,1)
把A(x,1)代入椭圆方程解得:x=±
2
3
3

点P(a,1)在椭圆
x2
2
+
y2
3
=1的外部
则:a∈(-∞,-
2
3
3
)∪(
2
3
3
,+∞)

故选:B
点评:本题考查的知识要点:直线和曲线的位置关系,及点和曲线的位置关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

满足{1,3}∪A={1,3,5}的集合A共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}前n项和为Sn,首项为2,且2,an,Sn成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)(理科学生做)若bn=log2an,cn=
bn
an
,求数列{cn}的前n项和Tn
(Ⅲ)(文科学生做)若bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C:y2=4x及圆M:(x-3)2+y2=1,
(1)过圆上一点P(3,1)的直线l1交抛物线C于A、B两点,若线段AB被点P平分,求直线l1的方程;
(2)直线l2交抛物线C于E、F两点,若线段EF的中点在圆M上,求
OE
OF
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
1-2x
1+2x

(1)判断函数f(x)的奇偶性,并用奇偶性的定义证明;
(2)判断函数f(x)的单调性,并用单调性的定义证明;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等差数列{an}(n∈N*)的前n项和,且S6>S7>S5,给出下列五个命题:
①d>0;②S11>0;③S12<0;④数列{Sn}中的最大项为S11;⑤|a6|>|a7|.
其中正确命题的个数是(  )
A、5B、4C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求AC与PB所成的角的余弦值;
(3)求二面角A-MC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+a
x
,a≠0.
(1)若a=1,用定义证明f(x)在[1,+∞)上单调递增;
(2)判断并证明f(x)在其定义域上的单调性,并求f(x)在区间[1,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=sin(-2x+
π
4
),给出以下四个论断
①函数图象关于直线x=-
8
对称;
②函数图象一个对称中心是(
8
,0);
③函数f(x)在区间[-
π
8
8
]上是减函数;
④当且仅当kπ+
8
<x<kπ+
8
(k∈Z)时,f(x)<0.
以上四个论断正确的序号是
 

查看答案和解析>>

同步练习册答案