精英家教网 > 高中数学 > 题目详情
(2012•广州一模)已知集合A={x|1≤x≤2},B={x||x-a|≤1},若A∩B=A,则实数a的取值范围为
[1,2]
[1,2]
分析:根据B={x||x-a|≤1},求得B={x|a-1≤x≤a+1},由A∩B=A得A⊆B,并求出此时满足题干的a应满足的条件,解不等式即可求得实数a的范围.
解答:解:由={x||x-a|≤1},得B={x|a-1≤x≤a+1},
由A∩B=A得A⊆B,
a+1≥2
a-1≤1

∴a∈[1,2].
故答案为:[1,2].
点评:此题是个基础题.考查集合的包含关系判断及应用,以及绝对值不等式和含参数的不等式的解法,同时也考查学生灵活应用知识分析、解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广州一模)如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a表示.已知甲、乙两个小组的数学成绩的平均分相同.
(1)求a的值;
(2)求乙组四名同学数学成绩的方差;
(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X,求随机变量X的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)求函数f(x)的单调递增区间;
(2)若对任意a∈[3,4],函数f(x)在R上都有三个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)设函数f(x)=ex(e为自然对数的底数),gn(x)=1+x+
x2
2!
+
x3
3!
+…+
xn
n!
(n∈N*).
(1)证明:f(x)≥g1(x);
(2)当x>0时,比较f(x)与gn(x)的大小,并说明理由;
(3)证明:1+(
2
2
)1+(
2
3
)2+(
2
4
)3+…+(
2
n+1
)ngn(1)<e
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知
e1
=(
3
,-1)
e2
=(
1
2
3
2
)
,若
a
=
e1
+(t2-3)•
e2
b
=-k•
e1
+t•
e2
,若
a
b
,则实数k和t满足的一个关系式是
t3-3t-4k=0
t3-3t-4k=0
k+t2
t
的最小值为
-
7
4
-
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知平面向量
a
=(1,3)
b
=(-3,x)
,且
a
b
,则
a
b
=(  )

查看答案和解析>>

同步练习册答案