精英家教网 > 高中数学 > 题目详情
(2011•宁波模拟)已知关于x的方程x3-ax2-2ax+a2-1=0有且只有一个实根,则实数a的取值范围是
a<
3
4
a<
3
4
分析:先把方程变形为关于a的一元二次方程的一般形式:a2-(x2+2x)a+x3-1=0,然后利用求根公式解得a=x-1或a=x2+x+1;于是有x=a+1或x2+x+1-a=0,再利用原方程只有一个实数根,确定方程x2+x+1-a=0没有实数根或方程x2+x+1-a=0,有重根a+1,最后解a的不等式得到a的取值范围.
解答:解:把方程变形为关于a的一元二次方程的一般形式:a2-(x2+2x)a+x3-1=0,则△=(x2+2x)2-4(x3-1)=(x2+2)2
∴a=
x 2+2x±(x 2+2)
2
,即a=x-1或a=x2+x+1.
所以有:x=a+1或x2+x+1-a=0.
∵关于x3-ax2-2ax+a2-1=0只有一个实数根,
∴情形1,方程x2+x+1-a=0没有实数根,即△<0,得a<
3
4

情形2,方程x2+x+1-a=0,有重根a+1,此时有a+1=-
1
2
,a=-
3
2
,方程为x2+x+
5
2
=0无解,不合题意,舍去,
所以a的取值范围是a<
3
4

故答案为:a<
3
4
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了转化得思想方法在解方程中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•宁波模拟)已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为
1211
1211

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宁波模拟)设
OM
=(1,
1
2
),
ON
=(0,1)
,O为坐标原点,动点P(x,y)满足0≤
OP
OM
≤1,0≤
OP
ON
≤1
,则z=y-x的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宁波模拟)如图,△ABC中,
GA
+
GB
+
GC
=
O
CA
=
a
CB
=
b
,若
CP
=m
a
CQ
=n
b
,CG∩PQ=H,
CG
=2
CH
,则
1
m
+
1
n
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宁波模拟)已知:圆x2+y2=1过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆
x2
a2
+
y2
b2
=1
相交于A,B两点记λ=
OA
OB
,且
2
3
≤λ≤
3
4

(Ⅰ)求椭圆的方程;
(Ⅱ)求k的取值范围;
(Ⅲ)求△OAB的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宁波模拟)集合P={n|n=lnk,k∈N*},若a,b∈P,则a⊕b∈P,那么运算⊕可能是(  )

查看答案和解析>>

同步练习册答案