精英家教网 > 高中数学 > 题目详情
对于两个等差数列{an}和{bn},有a1+b100=100,b1+a100=100,则数列{an+bn}的前100项之和S100为(    )。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若椭圆E1
x2
a
2
1
+
y2
b
2
1
=1
和椭圆E2
x2
a
2
2
+
y2
b
2
2
=1
满足
a2
a1
=
b2
b1
=m
 (m>0)
,则称这两个椭圆相似,m称为其相似比.
(1)求经过点(2,
6
)
,且与椭圆
x2
4
+
y2
2
=1
相似的椭圆方程;
(2)设过原点的一条射线l分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),
|OA|+
1
|OB|
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆C1
x2
22
+
y2
(
2
)
2
=1
和C2
x2
42
+
y2
(2
2
)
2
=1
交于A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为
x2
32
+
y2
(
3
2
2
)
2
=1
”.请用推广或类比的方法提出类似的一个真命题,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•朝阳区二模)设A是满足下列两个条件的无穷数列{an}的集合:
an+an+22
an+1
;     ②an≤M.其中n∈N*,M是与n无关的常数.
(Ⅰ)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,证明:{Sn}∈A;
(Ⅱ)对于(Ⅰ)中数列{an},正整数n1,n2,…,nt…(t∈N*)满足7<n1<n2<…<nt<…(t∈N*),并且使得a6a7an1an2,…,ant,…成等比数列. 若bm=10m-nm(m∈N*),则{bm}∈A是否成立?若成立,求M的取值范围,若不成立,请说明理由;
(Ⅲ)设数列{cn}的各项均为正整数,且{cn}∈A,证明:cn≤cn+1

查看答案和解析>>

科目:高中数学 来源: 题型:013

SnTn分别是两个等差数列的前n项之和,如果对于所有的自然数n,都有,则的值为   

[  ]

A74   B43   C7871   D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-5,0),B(5,0),动点P满足,8成等差数列.

(1)求点P的轨迹方程;

(2)对于x轴上的点M,若满足,则称点M为点P对应的“比例点”,求证:对任意一个确定的点P,它总对应两个“比例点”;

(3)当点P在(1)的轨迹上运动时,求它在(2)中对应的“比例点”M的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009年上海市松江区高考数学二模试卷(理科)(解析版) 题型:解答题

若椭圆E1和椭圆E2满足,则称这两个椭圆相似,m称为其相似比.
(1)求经过点,且与椭圆相似的椭圆方程;
(2)设过原点的一条射线l分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆C1和C2交于A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为”.请用推广或类比的方法提出类似的一个真命题,并给予证明.

查看答案和解析>>

同步练习册答案