设函数
,
,其中实数
.
(1)若
,求函数
的单调区间;
(2)当函数
与
的图象只有一个公共点且
存在最小值时,记
的最小值为
,求
的值域;
(3)若
与
在区间
内均为增函数,求实数
的取值范围.
(1)详见解析;(2)
;(3)
.
解析试题分析:(1)这是一个三次函数求单调区间的问题,此类问题比较熟悉,三次函数的导数为二次函数,它的零点容易求出,但要注意对零点大小的比较,才能准确写出单调区间;(2)函数
与
的图象只有一个公共点,知方程
只有一个根(含重根),结合
有最小值,可求出
的取值范围,而
是一个二次函数,易得它提最小值
,最后可求出
的值域;(3)由(1)的过程和结果易知
的单调增区间,
应是其子区间,再由
的单调增区间,
也应是其子区间,从而确定
的取值范围,要注意分类讨论思想的应用.
试题解析:(1)∵
,又![]()
∴当
或
时,
;当
时,![]()
∴
的递增区间为
和
,递减区间为
.
(2)由题意知![]()
即
恰有一根(含重根)∴
,即
,
又
,且
存在最小值,所以![]()
又
,∴
,∴
的值域为
.
(3)当
时,
在
和
内是增函数,
在
内是增函数,由题意得
,解得
.
当
时,
在
和
内是增函数,
在
内是增函数,由题意得
,解得
.
综上可知,实数
的取值范围为
.
考点:函数的综合应用.
科目:高中数学 来源: 题型:解答题
已知定义在
上的函数
,如果满足:对任意
,存在常数
,使得
成立,则称
是
上的有界函数,其中
称为函数
的上界.
下面我们来考虑两个函数:
,
.
(Ⅰ)当
时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(Ⅱ)若
,函数
在
上的上界是
,求
的取值范围;
(Ⅲ)若函数
在
上是以
为上界的有界函数, 求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某市一家庭今年一月份、二月份、和三月份煤气用量和支付费用如下表所示:
| 月份 | 用气量(立方米) | 煤气费(元) |
| 1 | 4 | 4.00 |
| 2 | 25 | 14.00 |
| 3 | 35 | 19.00 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
.
(Ⅰ)若函数
的图象与
轴无交点,求
的取值范围;
(Ⅱ)若函数
在
上存在零点,求
的取值范围;
(Ⅲ)设函数
,
.当
时,若对任意的
,总存在
,使得
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
的图像在点
处的切线方程为
.
(Ⅰ)求实数
的值;
(Ⅱ)求函数
在区间
上的最大值;
(Ⅲ)若曲线
上存在两点
使得
是以坐标原点
为直角顶点的直角三角形,且斜边
的中点在
轴上,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某投资公司投资甲、乙两个项目所获得的利润分别是P(亿元)和Q亿元),它们与投资额t(亿元)的关系有经验公式
其中
,今该公司将5亿元投资这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿元),
(1)求y关于x的解析式,
(2)怎样投资才能使总利润最大,最大值为多少?.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数
与两坐标轴分别交于不同的三点A、B、C.
(1)求实数t的取值范围;
(2)当
时,求经过A、B、C三点的圆F的方程;
(3)过原点作两条相互垂直的直线分别交圆F于M、N、P、Q四点,求四边形
的面积的最大值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com