精英家教网 > 高中数学 > 题目详情
已知f(x)=log
1
2
(x2-ax+3a)
在区间[2,+∞)上为减函数,则实数a的取值范围是(  )
分析:令t=x2-ax+3a,则由题意可得函数t在区间[2,+∞)上为增函数且t(2)>0,故有
a
2
≤2
t(2)=4-2a+3a>0
,由此解得实数a的取值范围.
解答:解:令t=x2-ax+3a,则由函数f(x)=g(t)=log
1
2
t
 在区间[2,+∞)上为减函数,
可得函数t在区间[2,+∞)上为增函数且t(2)>0,
故有
a
2
≤2
t(2)=4-2a+3a>0
,解得-4<a≤4,
故选B.
点评:本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log(2x+1)在(-,0)内恒有f(x)>0,则a的取值范围是

A.a>1

B.0<a<1

C.a<-1或a>1

D.-a<-1或1<a

查看答案和解析>>

科目:高中数学 来源:2013届内蒙古巴彦淖尔市中学高二下期中文科数学试卷(解析版) 题型:解答题

已知f(x)=log  (a>0且a≠1).

(1)求f(x)的 定义域;

(2)判断f(x)的奇偶性并予以证明.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log a (a>0, 且a≠1)

求f(x)的定义域

求使 f(x)>0的x的取值范围.

查看答案和解析>>

同步练习册答案