精英家教网 > 高中数学 > 题目详情
6.已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=2,则|b1|+|b2|+…+|bn|=4n-1.

分析 先由an=-4n+5及q=an-an-1求出q,再由b1=a2,求出b1,从而得到bn,进而得到|bn|,根据等比数列前n项和公式即可求得|b1|+|b2|+…+|bn|.

解答 解:q=an-an-1=(-4n+5)-[-4(n-1)+5]=-4,b1=a2=-4×2+5=-3,
所以bn=b1qn-1-3•(-4)n-1,|bn|=|-3•(-4)n-1|=3•4n-1
所以|b1|+|b2|+…+|bn|=3+3•4+3•42+…+3•4n-1=3•$\frac{1-{4}^{n}}{1-4}$=4n-1,
故答案为:4n-1

点评 本题考查等差、等比数列通项公式及等比数列的前n项和公式,考查学生的运算能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.作出下列函数图象,并按照要求答题.
(1)$f(x)=\frac{x+1}{x}$;                        
(2)f(x)=x2-4|x|.

(1)值域为:(-∞,1)∪(1,+∞)         
(2)单调增区间为:(-2,0)∪(2.+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆C的中心在原点,焦点F1,F2在x轴上,焦距为4,P为椭圆C上一动点,△PF1F2的内角∠F1PF2最大为$\frac{π}{2}$.
(1)求椭圆C的方程;
(2)是否存在与椭圆C交于A、B两点的直线y=kx+m(k∈R),使得|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果函数f(x)为奇函数,当x<0时,f(x)=ln(-x)+3x,则曲线在点(1,3)处的切线方程为(  )
A.y+3=-2(x-1)B.y-3=2(x-1)C.y+3=4(x-1)D.y-3=4(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:xcosθ+ysinθ+2=0与圆x2+y2=4,则直线l与圆的位置关系是(  )
A.相交B.相离C.相切D.与θ的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1的方向向量为$\vec a=(1,2)$,直线l2的方向向量为$\vec b=(1,-3)$,那么l1与l2所成的角是(  )
A.30°B.45°C.150°D.160°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.方程log2(x-1)=2-log2(x+1)的解集为{$\sqrt{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若向量$\overrightarrow{a}$=(3,m),$\overrightarrow{b}$=(2,-1),$\overrightarrow{a}$•$\overrightarrow{b}$=0,则实数m的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数$f(x)=2sin({2x+ϕ+\frac{π}{3}})$是奇函数,且在区间$[{0,\frac{π}{4}}]$是减函数,则ϕ的值可以是(  )
A.$-\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{5π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案